Atlas of Heart Disease
and Stroke


Among American Indians and Alaska Natives 2005

## Suggested Citation

Casper ML, Denny CH, Coolidge JN, Williams GI Jr, Crowell A, Galloway JM, Cobb N. Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and Indian Health Service; 2005.

## Cover Photos

Cover photographs are copyrighted and were provided by the following sources: Jim West and The Image Works (photographers Bob Daemmrich, EastcottMomatiuk, James Fossett, Willie Hill, Jack Kurtz, and David Lassman).

## For Free Copies

| E-mail: | ccdinfo@ cdc.gov |
| :--- | :--- |
| Write: | National Center for Chronic Disease Prevention |
| and Health Promotion |  |
|  | Atlas Project |
|  | Division of Adult and Community Health |
|  | 4770 Buford Highway NE |
|  | MS K-47 |

## Online

To view interactive maps of heart disease and stroke mortality or download sections of this atlas, visit http://www.cdc.gov/cvh/maps.

## Acknowledgments

The authors would like to thank the following people for their valuable contributions to the publication of this atlas: Janet Croft, George Mensah, and Darwin Labarthe for their continued support and enthusiasm; Elizabeth Barnett, Joel Halverson, and Valerie Braham for their initial vision and expertise in developing the first three atlases of heart disease and stroke; Mark Conner for his wonderful creativity and talent in developing the cover design; Mark Harrison for desktop publishing; Andrea Saddlemeir for her SAS expertise and her graciousness in assisting with analyses at a critical time; Kan Zheng for his valued assistance with data entry and quality control; and the following reviewers for their helpful comments on earlier drafts: Kurt J. Greenlund and H. Wayne Giles, National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP), CDC, and Phil Smith, Indian Health Service.

In addition, the authors would like to acknowledge the exceptional work performed by CDC staff in the National Center for Health Statistics in maintaining the National Vital Statistics System, as well as that of CDC staff in NCCDPHP in maintaining the Behavioral Risk Factor Surveillance System. Without the rigorous and systematic surveillance work performed by these staff members in close collaboration with state departments of health, producing this Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives would not be possible.

## Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives

Michele L. Casper
ClarkH. Denny
Jonathan N. Coolidge
G. Ishmael williams, Jr.

Amanda Crowell
James M. Galloway
Nathaniel Cobb
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES CENTERS FOR DISEASE CONTROL AND PREVENTION

## A Message from the Director of CDC

As the nation's prevention agency, the Centers for Disease Control and Prevention (CDC) is committed to reducing the burden of heart disease and stroke, which are the first and third leading causes of death and major contributors to disability in the United States. These two cardiovascular diseases are largely preventable, and targeted public health efforts can help reduce their impact. To meet this challenge, CDC works to monitor temporal and geographic trends in heart disease and stroke rates among different racial and ethnic groups, to strengthen the delivery of primary and secondary preventive health services to all such groups, and to implement policy changes that support the alleviation of disparities among all U.S. residents.

Among American Indians and Alaska Natives, heart disease and stroke are the first and sixth leading causes of death. I am pleased to provide you with the Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives, which presents the mortality rates and distribution of common risk factors for these diseases for this population in geographic units that allow communities to see where they stand. This information is essential to helping health professionals and policy makers at local, state, and national levels identify populations at greatest risk for cardiovascular disease and in greatest need of prevention efforts. This atlas provides county-level maps of heart disease and stroke mortality, as well as state maps of the geographic patterns of common risk factors. The magnitude of the burden of these risk factors also is compared for American Indians and Alaska Natives, Asians and Pacific Islanders, blacks, Hispanics, and whites. The comprehensive information provided in this atlas will allow health officials to tailor their prevention efforts to specific communities as needed.

This publication is the fourth in a series of CDC atlases related to cardiovascular disease. However, it is the first to focus on geographic patterns of heart disease and stroke mortality and risk factors for a specific racial/ethnic group in the United States. I encourage you to use these data to improve the delivery of preventive health services and to create heart-healthy and stroke-free living and working environments for all American Indians and Alaska Natives.


Julie Louis Gerberding, MD, MPH
Director
Centers for Disease Control and Prevention

## A Message from the Director of IHS

The Indian Health Service (IHS), an agency of the U.S. Department of Health and Human Services (HHS), is the principal federal health care provider and advocate for the health of American Indians and Alaska Natives. Employing a community-based system of care, the IHS is the primary source of personal and public health care services for the majority of the nation's estimated 2.4 million American Indians and Alaska Natives. The IHS is the only source of care for the many American Indian and Alaska Native people who live on or near a reservation in remote and poverty-stricken areas of the country where other sources of health care are less available.

Heart disease has become the leading cause of death among American Indians and Alaska Natives, and stroke is the sixth leading cause of death. The incidence of coronary heart disease among American Indians and Alaska Natives occurs at rates almost double that of non-Indian communities. In addition to the higher rates of cardiovascular disease compared with the general U.S. population, the burden of premature cardiovascular disease among the American Indian and Alaska Native population also appears greater than for other racial and ethnic populations in the United States.

The Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives provides insights into the geographic disparities in heart disease and stroke experienced by American Indians and Alaska Natives. Health information contained in publications such as this will support efforts at the community level-developed by the community and focused on the individual and the community as a whole-in conjunction with the support and collaborative efforts of public health institutions, federal and state agencies, universities, and service organizations, to eliminate cardiovascular disease among American Indians and Alaska Natives.

The Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives provides information to assist in the successful implementation of efforts to reach the two overarching goals of Healthy People 2010, which are ". . to increase the quality and years of healthy life and to eliminate health disparities," and to support the successful implementation of HHS's Steps to a HealthierUS Initiative. This publication is an important and significant step toward these goals.


Charles W. Grim, DDS, MHSA
Assistant Surgeon General
Director, Indian Health Service

I am pleased to present the Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives. The maps in this atlas highlight the great diversity-in culture, language, history, and the burden of heart disease and stroke-that exists among American Indian and Alaska Native populations of the United States.

This landmark document supports the elimination of health disparities, one of the two overarching goals of Healthy People 2010, and addresses the important need to reduce the risk for heart disease and stroke among American Indians and Alaska Natives. The maps in this atlas present county-by-county heart disease and stroke mortality rates, as well as state-specific prevelances of eight major risk factors for heart disease and stroke. Public health professionals at local, state, and national levels will be able to use this information to tailor prevention resources to the populations of American Indians and Alaska Natives who need additional services the most.

Mortality trends for heart disease and stroke indicate that the rate of decline among American Indians and Alaska Natives has been relatively slow since the early 1970s. This observation is in stark contrast to the large declines in heart disease and stroke mortality reported for the total U.S. population during the same period. These alarming trends underscore the importance of enhancing our efforts to support innovative, community-based strategies for reducing the risk for heart disease and stroke among American Indians and Alaska Natives. We can expect to achieve the greatest cardiovascular health benefits through prevention. The Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives indicates where prevention programs and policies are most needed and can have the greatest benefit.

We hope that you will find this publication to be a valuable resource as you design programs and policies to prevent heart disease and stroke in your communities.
Sunillumist
Darwin R. Labarthe, MD, MPH, PhD
Acting Branch Chief, Cardiovascular Health Branch
National Center for Chronic Disease Prevention and Health Promotion
Centers for Disease Control and Prevention
A Message from the Director of CDC ..... iii
A Message from the Director of IHS ..... v
Foreword ..... vii
Section 1. Introduction ..... 1
Section 2. National Maps of Heart Disease and Stroke Mortality Among American Indians and Alaska Natives .....  7
Section 3. Risk Factors for Heart Disease and Stroke Among American Indians and Alaska Natives, by State ..... 17
Appendix A. Risk Factors for Heart Disease and Stroke Among the Total U.S. Population, by State ..... 51
Appendix B. Methodological and Technical Notes . . . ..... 61
Appendix C. Resources ..... 71
About the AuthorsInside Back Cover

$$
T
$$

During the last four decades, significant changes have occurred in the health of American Indian and Alaska Native (AI/AN) people. Although infectious diseases such as tuberculosis and gastroenteritis were rampant among Native Americans in the first half of the 20th century, they are no longer ranked in the leading causes of death and disability for this population. ${ }^{1}$ With many infectious diseases under control today, AI/AN people are living longer. Like many other Americans, they are now experiencing chronic diseases such as heart disease and stroke as dominant risks to their health and longevity.

## Disease Burden

Heart disease and stroke are the first and sixth leading causes of death, respectively, among AI/AN people, ${ }^{2}$ as well as major causes of disability. Mortality trends for heart disease indicate that the rate of decline among $\mathrm{AI} / \mathrm{AN}$ people has been relatively slow since 1972, with virtually no decline from 1989 through 1997. ${ }^{2}$ This trend is in stark contrast to the large declines in heart disease mortality reported for the total U.S. population since the early 1970s. ${ }^{2,3}$ Consequently, although heart disease death rates for AI/AN people were $21 \%$ lower than the total U.S. population in the early 1970 s, they were $20 \%$ higher by the late 1990s. ${ }^{2}$

A similar trend exists for stroke mortality. From 1972 through 1985, stroke death rates for AI/AN people declined, but at a slower rate than that reported for the total U.S. population. ${ }^{2}$ From 1985 through 1997, virtually no decline in stroke death rates was reported for the AI/AN population. By the end of the 1990 s, stroke death rates were $14 \%$ higher for AI/AN people than for the total U.S. population. ${ }^{2}$

Recent studies of individual $\mathrm{AI} / \mathrm{AN}$ tribes and communities highlight the heavy burden of heart disease among AI/AN people. ${ }^{4,5}$ In 1999, the National Heart, Lung, and Blood Institute (NHLBI) funded the Strong Heart Study, which was conducted among 13 tribes. The study reported that the incidence of coronary heart disease among American Indians was nearly double that reported in the Atherosclerotic Risk in

Communities (ARIC) Study of atherosclerosis in four nonIndian communities. ${ }^{6}$ Other recent studies have reported that both the prevalence of heart disease and the percentages of premature deaths are higher among Native Americans than among any other racial or ethnic group in the United States. ${ }^{78}$

## Risk Factors

During the past several decades, marked increases in the prevalence of many risk factors for heart disease and stroke have been reported among AI/AN people. ${ }^{4}$ These increases place AI/AN populations at increased risk for subsequent rises in death rates from heart disease and stroke. In 2003, the Centers for Disease Control and Prevention (CDC) reported that the prevalence of self-reported obesity among AI/AN people was $23.9 \%$, diabetes was $9.7 \%$, cigarette smoking was $32.2 \%$, and physical inactivity was $32.5 \% .^{9}$ All are risk factors for heart disease and stroke.

In addition, two recent studies that collected extensive data on heart disease and stroke risk factors among specific AI/AN communities found high prevalences of insulin resistance syndrome, renal injury, lower extremity arterial disease, hypertension, elevated cholesterol levels, and diabetes. These studies included the Inter-Tribal Heart Project conducted collaboratively by CDC, the Indian Health Service (IHS), and tribal leaders of the Menominee Reservation in Wisconsin and two Chippewa Reservations in Minnesota, ${ }^{10-16}$ as well as the Strong Heart Study conducted among 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota. ${ }^{17-20}$

Diabetes is a particularly important risk factor for heart disease and stroke among AI/AN people because diabetes prevalence in this population is increasing so rapidly. Before World War II, diabetes was uncommon in this population. ${ }^{21}$ Today, an estimated $9.7 \%$ of the AI/AN population has diabetes, compared with $5.7 \%$ of non-AI/AN populations in the United States. ${ }^{9}$ The diabetes death rate was $52.8 / 100,000$ among AI/AN people during 1996-1998, compared with $13.5 / 100,000$ for all U.S. racial and ethnic groups. ${ }^{2}$ In a study of people hospitalized for stroke in

Arizona during 1990-1996, the prevalence of diabetes was nearly twice as high for AI/AN people ( $62 \%$ ) as it was for Hispanics ( $36 \%$ ) and more than three times as high as for whites ( $17 \%$ ). ${ }^{22}$

## Data Limitations

There is a paucity of data on the burden of heart disease and stroke among AI/AN people in the United States. Data that are collected as part of national surveys are limited by very small sample sizes. For example, the series of National Health and Nutrition Examination Surveys (NHANES I, II, and III), which collected information on medical histories, demographics, and behaviors related to health and nutrition for the civilian, noninstitutionalized population of the United States, did not report data for AI/AN populations because the sample sizes were too small. Data that are collected for individual tribes and communities do not necessarily represent the overall Native American population because of the large variations in the prevalence of risk factors, as well as the disparities in mortality observed among different tribes and communities across the United States. ${ }^{9,23}$

Mortality data for AI/AN people are more readily available than survey data. CDC's National Center for Health Statistics maintains a database of death certificates for all U.S. citizens. However, AI/AN people are sometimes misreported as "white" on death certificates, especially in areas distant from traditional AI/AN reservations. ${ }^{2}$ A 1996 study by the IHS found that the degree of misreporting varied from $1.2 \%$ in Arizona to $28 \%$ in Oklahoma and $30.4 \%$ in California. ${ }^{24}$ Another report found that race was coded incorrectly on death certificates for $26.6 \%$ of AI/AN people nationwide. ${ }^{25}$

To address the problem of misreporting of AI/AN race on death certificates, the death rates presented in the most recent edition of Trends in Indian Health have been adjusted to account for misreporting. ${ }^{2}$ A recent study highlights how the misreporting of AI/AN race has led to underestimates of mortality rates for heart disease and stroke among AI/AN people when the data were not adjusted to account for this misreporting. ${ }^{26}$ The results of this
study indicate that after adjustment for misreporting, the mortality rates for heart disease and stroke among AI/AN people (195.9 per 100,000 ) were substantially higher than those among whites (159.1) or those among the total U.S. population (166.1) and that the magnitude of these disparities is increasing over time. ${ }^{26}$ Unfortunately, because adjustment factors are not available at the county level, the maps of heart disease and stroke mortality rates in this atlas are based on data that have not been adjusted for misreporting of race among AI/AN decedents.

## Looking Ahead

The data that are available for AI/AN people have increased awareness among members of the public health community, health care practitioners, and Native Americans of the significance and severity of heart disease and stroke among AI/AN populations. Effectively preventing heart disease and stroke in this population and reducing disparities in both the prevalence of these conditions and the quality of care available requires an innovative and multidimensional approach. Prevention strategies should be more intensive to address the growing risk factors, and they should be culturally appropriate, taking into account the wide variations among tribes and communities. These strategies should be developed in partnership with tribal and AI/AN communities with input from individuals, their families, and community organizations.

As part of CDC's Racial and Ethnic Approaches to Community Health (REACH) 2010 project, eight AI/AN communities are establishing community coalitions, identifying priority concerns, and implementing programs and policies designed to reduce people's risk for chronic diseases such as heart disease and stroke. During 2001-2002, the REACH 2010 Risk Factor Survey was conducted in 21 minority communities, including two AI communities. The study reported that American Indians had the highest prevalences of cardiovascular disease, obesity, current smoking, and diabetes. ${ }^{27}$ These results underscore the need for enhanced national efforts to eliminate the heavy burden of cardiovascular disease and its risk factors among AI/AN populations.

Strong support from national public health agencies and institutions-such as that provided currently by IHS, CDC, and NHLBI-is also important. These agencies are part of the U.S. Department of Health and Human Services (HHS), which has established national health objectives for the next decade, including the overarching goals of increasing quality and years of healthy life and eliminating health disparities among racial and ethnic groups. ${ }^{28}$ By highlighting the burden of heart disease and stroke among Native Americans, this Atlas of Heart Disease and Stroke Among American Indians and Alaska Natives can help achieve these goals.

## Indian Health Service

The IHS is a subagency of HHS and is responsible for providing federal health services to AI/AN people. ${ }^{29}$ This responsibility is based on the special relationship between the federal government and the 560 Native American tribes that it recognizes. This government-to-government relationship is based on Article 1, Section 8, of the U.S. Constitution and has been given form and substance by numerous treaties, laws, Supreme Court decisions, and executive orders.

The IHS is the federal health care provider and health advocate for AI/AN people. Services are provided directly and through health programs contracted to and operated by individual tribes. The federal system consists of 36 hospitals, 61 health centers, 49 health stations, and 5 residential treatment centers. Another 34 urban health projects provide a variety of health and referral services.

The agency strives to ensure that comprehensive, culturally acceptable personal and public health services are available and accessible to AI/AN people. Its mission is to work in partnership with AI/AN people to raise the physical, mental, social, and spiritual health of this population to the highest level possible.

In addition, the IHS is responsible for educating people who work in health delivery programs that AI/AN people are American citizens who are eligible for services from all
federal, state, and local health programs. In addition, the IHS is the principal federal health advocate for building health coalitions, networks, and partnerships with tribal nations, other government agencies, and nonfederal organizations (e.g., academic medical centers, private foundations) for the benefit of AI/AN people.

The delivery of IHS health services is managed by local administrative units called service units, which serve the same function as county or city health departments. Some service units are responsible for several small reservations, while some large reservations are served by several different service units.

Service units also are grouped into larger management jurisdictions on the basis of cultural, demographic, and geographic characteristics of different tribes. These larger jurisdictions are administered by the following 12 area offices: Aberdeen, Alaska, Albuquerque, Bemidji, Billings, California, Nashville, Navajo, Oklahoma, Phoenix, Portland, and Tucson.

1. Young TK. The Health of Native Americans-Towards a Biocultural Epidemiology. New York: Oxford Press; 1994.
2. Indian Health Service. Trends in Indian Health, 2000-2001 Rockville, MD: U.S. Department of Health and Human Services; February 2004.
3. CDC. Decline in deaths from heart disease and stroke-United States, 1900-1999. Morbidity and Mortality Weekly Report 1999;48(30):649-56.
4. Galloway JM. The epidemiology of atherosclerosis and its risk factors among Native Americans. Current Diabetes Reports 2002;2(3):274-81.
5. Sewell JL, Malasky BR, Gedney CL, Gerber TM, Brody EA, Pacheco EA, et al. The increasing incidence of coronary artery disease and cardiovascular risk factors among a Southwest Native American tribe: the White Mountain Apache Heart Study. Archives of Internal Medicine 2002;162(12):1368-72.
6. Howard BV, Lee ET, Cowan LD, Devereux RB, Galloway JM, Go OT, et al. Rising tide of cardiovascular disease in American Indians: the Strong Heart Study. Circulation 1999;99(18):2389-95.
7. CDC. Health status of American Indians compared with other racial/ ethnic minority populations-selected states, 2001-2002. Morbidity and Mortality Weekly Report 2003;52(47):1148-52.
8. CDC. Disparities in premature deaths from heart disease-50 states and the District of Columbia, 2001. Morbidity and Mortality Weekly Report 2004;53(6):121-5.
9. CDC. Surveillance for health behaviors of American Indians and Alaska Natives. Findings from the Behavioral Risk Factor Surveillance System, 1997-2000. Morbidity and Mortality Weekly Report 2003;52(SS-7).
10. Lamar Welch VL, Casper M, Greenlund K, Zheng ZJ, Giles W, Rith-Najarian S. Prevalence of lower extremity arterial disease defined by the ankle-brachial index among American Indians: the Inter-Tribal Heart Project. Ethnicity and Disease 2002;12(1):S1-63-7.
11. Greenlund KJ, Valdez R, Casper ML, Rith-Najarian SJ, Croft JB. Prevalence and correlates of the insulin resistance syndrome among Native Americans. The Inter-Tribal Heart Project. Diabetes Care 1999;22(3):441-7.
12. Fischer ID, Brown DR, Blanton CJ, Casper ML, Croft JB, Brownson RC. Physical activity patterns of Chippewa and Menominee Indians: the Inter-Tribal Heart Project. American Journal of Preventive Medicine 1999;17(3):189-97.
13. Kasiske BL, Rith-Najarian SJ, Casper ML, Croft JB. American Indian heritage and risk factors for renal injury. Kidney International 1998;54(4):1305-10.
14. CDC. The Inter-Tribal Heart Project: Results from the Cardiovascular Health Survey. Atlanta: U.S. Department of Health and Human Services; 1996.
15. Casper ML, Rith-Najarian SJ, Croft JB, Giles W, Donehoo R, and the Inter-Tribal Heart Project Working Group. Blood pressure, diabetes and body mass index among Chippewa and Menominee Indians: the Inter-Tribal Heart Project preliminary data. Public Health Reports 1996;111(Suppl 2):37-9.
16. Struthers R, Savik K, Hodge FS. American Indian women and cardiovascular disease: response behaviors to chest pain. Joumal of Cardiovascular Nursing 2004;19(3):158-63.
17. Howard BV, Lee ET, Yeh JL, Go O, Fabsitz RR, Devereux RB, et al. Hypertension in adult American Indians: the Strong Heart Study. Hypertension 1996;28(2):256-64.
18. Welty TK, Lee ET, Yeh JL, Cowan LD, Fabsitz RR, Le NA, et al. Cardiovascular disease risk factors among American Indians: the Strong Heart Study. American Journal of Epidemiology 1995;142(3):269-87.
19. Lee ET, Howard BV, Savage PJ, Cowan LD, Fabsitz RR, Oopik AJ, et al. Diabetes and impaired glucose tolerance in three American Indian populations aged 45-74 years: the Strong Heart Study. Diabetes Care 1995;18(5):599-610.
20. Howard BV, Lee ET, Cowan LD, Fabsitz RR, Howard WJ, Oopik AJ, et al. Coronary heart disease prevalence and its relation to risk factors in American Indians: the Strong Heart Study. American Journal of Epidemiology 1995;142:254-68.
21. Gohdes D. Diabetes in North American Indians and Alaska Natives. In: Diabetes in America. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive Kidney Diseases; 1995. NIH publication no. 95-1468.
22. Frey JL, Jahnke HK, Bulfinch EW. Differences in stroke between white, Hispanic, and Native American patients: the Barrow Neurological Institute stroke database. Stroke 1998;29(1):29-33.
23. Indian Health Service. Regional Differences in Indian Health, 20002001. Rockville, MD: U.S. Department of Health and Human Services; 2000.
24. Indian Health Service. Adjusting for Miscoding of Indian Race on State Death Certificates. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service; 1996.
25. Sorlie PD, Rogot E, Johnson NJ. Validity of demographic characteristics on the death certificate. Epidemiology 1992;3(2):181-4.
26. Rhoades DA. Racial misclassification and disparities in cardiovascular disease among American Indians and Alaska Natives. Circulation 2005;111(10):1250-6.
27. CDC. REACH 2010 Surveillance for Health Status in Minority Communities—United States, 2001-2002. Morbidity and Mortality Weekly Report 2004;53(SS-6).
28. U.S. Department of Health and Human Services. Healthy People 2010. 2nd edition. Two volumes. Washington, DC: U.S. Government Printing Office; 2000.
29. Indian Health Service Web site. Available at http://www.ihs.gov.

National Maps of Heart Disease and Stroke Mortality Among American Indians and Alaska Natives

## Heart Disease Mortality: American Indians and Alaska Natives

## American Indians and Alaska Natives

American Indian and Alaska Native (AI/AN) people made up $1.5 \%$ of the U.S. population ages 35 years and older in 2000. During 1996-2000, the age-adjusted heart disease death rate for $\mathrm{AI} / \mathrm{AN}$ people in this age group was $352 / 100,000$.

The national map of age-adjusted, spatially smoothed heart disease death rates for all AI/AN people shows considerable geographic disparity across the 806 counties for which sufficient data existed to calculate rates. County death rates ranged from 65 to $2,606 / 100,000$. The quintile ranking for each county is depicted on the national map, with the darkest color representing counties with the highest rates and the lightest color representing counties with the lowest rates. The map indicates that the highest heart disease death rates were located primarily in South and North Dakota, Wisconsin, and Michigan. Smaller concentrations of counties in the top quintile also were observed along the North Carolina-South Carolina border and in Mississippi and Oklahoma. Counties with the lowest rates were located largely in California and Florida, with groupings of low-rate counties also found in parts of Illinois, Texas, the Northeast, and the Southwest.

## Women and Men

During 1996-2000, the age-adjusted death rate for heart disease was 278/100,000 for AI/AN women and 445/100,000 for AI/AN men ages 35 and older. The maps of age-adjusted, spatially smoothed heart disease death rates for $\mathrm{AI} / \mathrm{AN}$ women and men show considerable geographic disparity across the counties for which sufficient data existed to calculate rates. For women, county death rates ranged from 60 to $1,110 / 100,000$. For men, the range was 108 to $2,374 / 100,000$.

The maps for women and men indicate slightly different geographic patterns than the patterns for the total population. This difference can be largely attributed to the small number of counties with sufficient data to calculate rates for women and men separately. The patterns for women and men are similar, with groups of counties with high rates in Oregon, northern California, and Arizona.

## A Note on Methods

Heart disease deaths were defined as those for which the underlying cause of death listed on the death certificate was diseases of the heart, defined according to the International Classification of Diseases (ICD-9 codes 390-398, 402, and 404-429; ICD-10 codes I00-I09, I11, I13, I20-I51). ${ }^{1.2}$ Heart disease death rates were age-adjusted to the 2000 U.S. population and spatially smoothed using a spatial moving average. A detailed explanation of the methods used to generate the death rates and create the maps can be found in Appendix B.

## A Cautionary Note

Decedents of certain racial and ethnic minorities are sometimes misreported as "white" on death certificates; in particular, American Indians have been significantly underreported on death certificates. ${ }^{3.5}$ In a 1996 Indian Health Service study, misclassification of American Indians ranged from 1.2\% in Arizona to $28 \%$ in Oklahoma and $30.4 \%$ in California. ${ }^{6}$ Consequently, the true heart disease death rates for AI/AN people were probably higher during 1996-2000 than indicated on the maps, and the magnitude of geographic disparity displayed on the maps may be biased.

[^0]
## Smoothed County Heart Disease Death Rates 1996-2000



* Heart disease death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.


## American Indians and Alaska Natives Ages 35 Years and Older



## Smoothed County Heart Disease Death Rates 1996-2000



* Heart disease death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.


## American Indian and Alaska Native Women Ages 35 Years and Older



## Smoothed County Heart Disease Death Rates 1996-2000



* Heart disease death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.


## American Indian and Alaska Native Men Ages 35 Years and Older



## Stroke Mortality: American Indians and Alaska Natives

## American Indians and Alaska Natives

American Indian and Alaska Native (AI/AN) people made up $1.5 \%$ of the U.S. population ages 35 years and older in 2000. During 1991-1998, the age-adjusted stroke death rate for AI/AN people in this age group was 79/100,000.

The national map of age-adjusted, spatially smoothed stroke death rates for all AI/AN people shows considerable geographic disparity across the 303 counties for which sufficient data existed to calculate rates. County death rates ranged from 29 to $272 / 100,000$. The quintile ranking for each county is depicted on the national map, with the darkest color representing counties with the highest rates and the lightest color representing counties with the lowest rates. The map suggests somewhat of a north-south gradient in stroke mortality among AI/AN people. Counties with high rates were reported primarily in the northern states of Alaska, Washington, Idaho, Montana, Wyoming, South Dakota, Wisconsin, and Minnesota. Counties with low rates were reported primarily in central Oklahoma and southern California. Exceptions to the north-south gradient were high rates in counties along the North Carolina-South Carolina border and along the southern tip of Louisiana.

## Women and Men

During 1991-1998, the age-adjusted death rate for stroke was $77 / 100,000$ for $\mathrm{AI} / \mathrm{AN}$ women and $80 / 100,000$ for $\mathrm{AI} / \mathrm{AN}$ men ages 35 and older. The maps of age-adjusted, spatially smoothed stroke death rates for AI/AN women and men show considerable geographic disparity across the counties for which sufficient data existed to calculate rates. For women, county death rates ranged from 35 to 291/100,000. For men, the range was 33 to 291/100,000.

The maps for women and men indicate slightly different geographic patterns than the patterns for the total population. This difference can be largely attributed to the small number of counties with sufficient data to calculate rates for women and men separately. The patterns for women and men are
similar, with groups of counties with high rates in Oregon, northern California, and Arizona.

## A Note on Methods

Stroke deaths were defined as those for which the underlying cause of death listed on the death certificate was cerebrovascular disease, defined according to the International Classification of Diseases, 9 th Revision, Clinical Modification (codes 430-438). ${ }^{1}$ Stroke death rates were age-adjusted to the 2000 U.S. population and spatially smoothed using a spatial moving average. A detailed explanation of the methods used to generate the death rates and create the maps can be found in Appendix B.

## A Cautionary Note

Decedents of certain racial and ethnic minorities are sometimes misreported as "white" on death certificates; in particular, American Indians have been significantly underreported on death certificates. ${ }^{2-4}$ In a 1996 Indian Health Service study, misclassification of American Indians ranged from 1.2\% in Arizona to $28 \%$ in Oklahoma and $30.4 \%$ in California. ${ }^{5}$ Consequently, the true stroke death rates for AI/AN people were probably higher during 1991-1998 than indicated on the maps, and the magnitude of geographic disparity displayed on the maps may be biased.

1. U.S. Department of Health and Human Services. Intemational Classification of Diseases, 9th Revision, Clinical Modification. Washington, DC: Public Health Service, Health Care Financing Administration; 1980.
2. Frost F, Shy K. Racial differences between linked birth and infant death records in Washington State. American Journal of Public Health 1980;70(9):974-6.
3. Hahn RA, Mulinare J, Teutsch SM. Inconsistencies in coding of race and ethnicity between birth and death in US infants: a new look at infant mortality, 1983 through 1985. JAMA 1992;267(2):259-63.
4. Kennedy RD, Deapen RE. Differences between Oklahoma Indian infant mortality and other races. Public Health Reports 1991;106(1):97-8.
5. Indian Health Service. Adjusting for Miscoding of Indian Race on State Death Certificates. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service; 1996.

## Smoothed County Stroke Death Rates 1991-1998



* Stroke death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.


## American Indians and Alaska Natives Ages 35 Years and Older

Age-Adjusted
Average Annual
Deaths per $100,000^{*}$
$\square$ $29-62$
$63-97$
Number of Counties61

| $\square \square$ | 63-97 |
| :--- | ---: |
| 98-131 | 61 |
| $\square$ | $132-171$ |
| 172-272 | 61 |
| $\square \square$ | 60 |
|  | Insufficient Data |$\quad 2,799$

## Smoothed County Stroke Death Rates 1991-1998


*Stroke death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.

## American Indian and Alaska Native Women Ages 35 Years and Older



## Smoothed County Stroke Death Rates 1991-1998



* Stroke death rates are spatially smoothed to enhance the stability of rates in counties with small populations. See Appendix B for details.


## American Indian and Alaska Native Men Ages 35 Years and Older



Risk Factors for Heart Disease and Stroke Among American Indians and Alaska Natives, by State

High blood pressure (hypertension) is a major risk factor for heart disease and stroke. For every 20 mm Hg systolic or 10 mm Hg diastolic increase in blood pressure, there is a doubling of deaths from both ischemic heart disease and stroke, according to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (Hypertension 2003;42:1206-52).

The JNC7 report also notes that only $34 \%$ of Americans with high blood pressure have it under control. Research shows that even a 5 mm Hg decrease in diastolic blood pressure can reduce heart disease risk by $21 \%$ (Arch Intern Med 2001;161:265760 ). A systolic blood pressure $<120 \mathrm{~mm} \mathrm{Hg}$ and a diastolic blood pressure $<80 \mathrm{~mm} \mathrm{Hg}$ is considered normal.

The IHS is working to better identify and reduce high blood pressure among American Indian and Alaska Native (AI/AN) people-for example, through electronic alerts to health care providers and audits of patients' charts. It also is administering

Figure 1. Prevalence of Self-Reported High Blood Pressure Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001 and 2003 Combined

numerous diabetes grants that include strategies to reduce high blood pressure and other cardiovascular risk factors.

CDC funds state programs to assess the prevalence of high blood pressure, increase compliance with treatment guidelines among managed care organizations, and prevent high blood pressure in the United States, with special programs tailored to minority groups and inner-city residents.

## Definition of High Blood Pressure

We defined self-reported high blood pressure on the basis of the following Behavioral Risk Factor Surveillance System (BRFSS) question: "Have you ever been told by a doctor, nurse, or other health care professional that you have high blood pressure?" This question was only asked in oddnumbered years, so the data for this analysis are from 2001 and 2003. Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found substantial state-to-state differences in the prevalence of high blood pressure among $\mathrm{AI} / \mathrm{AN}$ people (see facing map and Table 1). A 1.8 -fold difference existed between the midpoint of the lowest quartile ( $20 \%$ ) and that of the highest quartile (35\%).

The national prevalence among all $\mathrm{AL} / \mathrm{AN}$ people was $28 \%$. Prevalences were $26 \%$ for women and $29 \%$ for men. AI/AN people ranked second among U.S. racial/ethnic groups (see Figure 1).

## A Cautionary Note

Prevalences are based on a sample of $\mathrm{AI} / \mathrm{AN}$ people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of high blood pressure and are more representative of $\mathrm{AI} / \mathrm{AN}$ people living in urban rather than rural areas or on reservations (see Appendix B for details).

## Prevalence of Self-Reported High Blood Pressure 2001 and 2003 Combined



## American Indians and Alaska Natives Ages 18 Years and Older



Table 1. Prevalence of Self-Reported High Blood Pressure Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{+}$ |
| Alabama | 76 | 38.8 | 27.5-50.1 | 36 | $\ddagger$ |  | 40 | $\ddagger$ | 26.9-56.8 |
| Alaska | 1047 | 28.5 | 24.5-32.5 | 592 | 33.0 | 28.0-37.9 | 455 | 24.5 | 19.0-30.0 |
| Arizona | 272 | 21.7 | 14.3-29.2 | 176 | 19.5 | 10.6-28.5 | 96 | 27.5 | 16.0-39.0 |
| Arkansas | 107 | 35.1 | 26.8-43.4 | 62 | 29.4 | 22.2-36.7 | 45 | $\ddagger$ |  |
| California | 86 | 23.0 | 14.0-31.9 | 58 | 18.0 | 8.9-27.0 | 28 | $\ddagger$ |  |
| Colorado | 48 | $\pm$ | 15.1-34.9 | 32 | $\pm$ |  | 16 | $\ddagger$ |  |
| Connecticut | 76 | 23.3 | 12.9-33.7 | 37 | $\ddagger$ |  | 39 | $\ddagger$ |  |
| Delaware | 63 | 29.2 | 17.0-41.3 | 34 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| District of Columbia | 23 | $\pm$ |  | 9 | $\ddagger$ |  | 14 | $\pm$ |  |
| Florida | 102 | 30.3 | 18.3-42.3 | 53 | 30.3 | 14.6-45.9 | 49 | $\ddagger$ |  |
| Georgia | 102 | 29.3 | 20.6-38.0 | 55 | 37.4 | 27.1-47.6 | 47 | $\ddagger$ |  |
| Hawaii | 43 | $\pm$ |  | 21 | $\pm$ |  | 22 | $\ddagger$ |  |
| Idaho | 124 | 27.9 | 19.7-36.2 | 76 | 28.7 | 17.5-39.8 | 48 | $\ddagger$ |  |
| Illinois | 75 | 19.3 | 9.7-28.9 | 44 | $\ddagger$ |  | 31 | $\ddagger$ |  |
| Indiana | 68 | 29.0 | 19.6-38.4 | 36 | $\ddagger$ |  | 32 | $\pm$ |  |
| lowa | 26 | $\ddagger$ |  | 16 | $\ddagger$ |  | 10 | $\ddagger$ |  |
| Kansas | 89 | 23.2 | 14.1-32.4 | 51 | 24.1 | 12.1-36.1 | 38 | $\ddagger$ |  |
| Kentucky | 71 | 29.4 | 17.2-41.5 | 28 | $\ddagger$ |  | 43 | $\ddagger$ |  |
| Louisiana | 92 | 30.3 | 20.5-40.2 | 60 | 31.4 | 19.3-43.6 | 32 | $\ddagger$ |  |
| Maine | 63 | 28.8 | 17.0-40.7 | 36 | $\ddagger$ |  | 27 | $\ddagger$ |  |
| Maryland | 74 | 32.1 | 19.6-44.5 | 39 | $\ddagger$ |  | 35 | $\ddagger$ |  |
| Massachusetts | 95 | 29.8 | 20.1-39.6 | 60 | 25.8 | 19.4-32.3 | 35 | $\ddagger$ |  |
| Michigan | 56 | 29.4 | 17.7-41.2 | 31 |  |  | 25 | $\ddagger$ |  |
| Minnesota | 53 | 30.4 | 17.5-43.2 | 30 | $\ddagger$ |  | 23 | $\pm$ |  |
| Mississippi | 45 | $\ddagger$ |  | 28 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| Missouri | 88 | 34.3 | 21.2-47.5 | 45 | $\ddagger$ |  | 43 | $\ddagger$ |  |
| Montana | 744 | 32.2 | 27.1-37.3 | 449 | 33.5 | 27.6-39.3 | 295 | 31.7 | 24.3-39.1 |
| Nebraska | 46 | $\ddagger$ |  | 27 | $\ddagger$ |  | 19 | $\ddagger$ |  |
| Nevada | 84 | 22.9 | 16.1-29.7 | 40 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| New Hampshire | 73 | 19.2 | 9.7-28.7 | 37 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| New Jersey | 95 | 28.8 | 16.4-41.1 | 54 | 27.6 | 15.1-40.2 | 41 | $\ddagger$ |  |
| New Mexico | 356 | 19.9 | 14.5-25.4 | 201 | 19.8 | 12.2-27.4 | 155 | 19.6 | 11.3-27.8 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 73 | 29.6 | 16.3-42.8 | 47 | $\ddagger$ |  | 26 | $\ddagger$ |  |
| North Carolina | 298 | 29.8 | 22.5-37.0 | 193 | 34.6 | 25.0-44.1 | 105 | 24.5 | 13.7-35.3 |
| North Dakota | 161 | 29.1 | 20.8-37.4 | 100 | 22.4 | 14.2-30.6 | 61 | 40.0 | 27.2-52.8 |
| Ohio | 63 | 27.3 | 17.3-37.2 | 33 | $\pm$ |  | 30 | $\ddagger$ |  |
| Oklahoma | 898 | 33.4 | 30.2-36.6 | 573 | 34.3 | 30.2-38.4 | 325 | 32.5 | 27.4-37.5 |
| Oregon | 110 | 24.0 | 15.1-32.9 | 55 | 27.0 | 13.2-40.8 | 55 | 23.5 | 10.9-36.1 |
| Pennsylvania | 37 | $\pm$ |  | 20 | $\ddagger$ |  | 17 | + |  |
| Rhode Island | 69 | 23.5 | 14.4-32.5 | 36 | $\ddagger$ |  | 33 | $\ddagger$ |  |
| South Carolina | 90 | 33.1 | 24.0-42.2 | 46 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| South Dakota | 491 | 29.9 | 25.6-34.1 | 317 | 30.4 | 25.3-35.5 | 174 | 29.4 | 22.3-36.4 |
| Tennessee | 37 | $\ddagger$ |  | 21 | $\ddagger$ |  | 16 | + |  |
| Texas | 103 | 22.5 | 14.2-30.7 | 56 | 20.4 | 10.4-30.3 | 47 | $\ddagger$ |  |
| Utah | 56 | 37.8 | 25.4-50.1 | 29 | $\ddagger$ |  | 27 | $\ddagger$ |  |
| Vermont | 77 | 26.5 | 14.7-38.2 | 35 | $\ddagger$ |  | 42 | $\ddagger$ |  |
| Virginia | 68 | 33.2 | 21.4-44.9 | 32 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Washington | 392 | 31.9 | 24.7-39.1 | 210 | 28.9 | 20.3-37.5 | 182 | 33.1 | 22.6-43.7 |
| West Virginia | 59 | 27.9 | 16.8-39.0 | 26 | $\ddagger$ |  | 33 | $\ddagger$ |  |
| Wisconsin | 89 | 31.5 | 24.2-38.8 | 48 | $\pm$ |  | 41 | $\ddagger$ |  |
| Wyoming | 101 | 16.4 | 9.0-23.8 | 61 | 13.3 | 4.5-22.1 | 40 | $\ddagger$ |  |
| United States | 7734 | 27.7 | 25.4-29.8 | 4491 | 26.1 | 23.3-28.9 | 3243 | 29.1 | 25.8-32.3 |
| Region ${ }^{\text {s }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 2206 | 29.1 | 25.6-32.6 | 1332 | 29.0 | 24.6-33.4 | 874 | 29.0 | 23.8-34.3 |
| Northern Plains | 1835 | 29.8 | 25.5-34.1 | 1115 | 27.5 | 21.9-33.1 | 720 | 32.0 | 25.6-38.4 |
| Southwest | 816 | 23.3 | 18.6-28.0 | 478 | 21.1 | 14.8-27.4 | 338 | 26.6 | 21.0-32.2 |
| Pacific Coast | 712 | 24.8 | 17.9-31.6 | 399 | 19.8 | 12.3-27.4 | 313 | 31.4 | 20.0-42.7 |
| Alaska | 1047 | 28.5 | 24.5-32.5 | 592 | 33.0 | 28.0-37.9 | 455 | 24.5 | 19.0-30.0 |

[^1]Studies have shown that people with blood cholesterol levels in the highest $10 \%$ of the population are four times more likely to die of heart disease and stroke than those with cholesterol levels in the lowest $10 \%$ (MMWR 1992;41[36]). Diet modification, physical activity, weight control, and medication can help to lower blood cholesterol levels, according to the American Heart Association.

Cholesterol is a fatty substance that the human body needs to function properly. When there is too much cholesterol in the body, it deposits in arteries, causing them to narrow. People with blood cholesterol levels $>240 \mathrm{mg} / \mathrm{dL}$ are considered to be at high risk for heart disease and stroke (National Cholesterol Education Program).

Prevalence of high cholesterol is increasing among American Indian and Alaska Native (AI/AN) people (MMWR 2003;52 [47]1148-52). In response, the IHS has developed several programs to ensure appropriate screening and to improve control of this risk factor. Sample activities include educating people

Figure 2.
Prevalence of Self-Reported High Cholesterol Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001 and 2003 Combined

about the dangers of high cholesterol levels, implementing electronic systems for quality assurance and reminders to health care providers, and awarding diabetes and cardiovascular health grants to tribes and AI/AN communities.

CDC currently funds 32 states and the District of Columbia to develop strategies and implement programs that reduce the prevalence of heart disease and stroke and related risk factors, including high cholesterol.

## Definition of High Cholesterol

We defined self-reported high cholesterol on the basis of "yes" answers to the following Behavioral Risk Factor Surveillance System (BRFSS) question: "Have you ever been told by a doctor or other health professional that your cholesterol is high?"' This question was only asked in odd-numbered years, so the data for this analysis are from 2001 and 2003. Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found substantial state-to-state differences in the prevalence of high cholesterol among AI/AN people (see facing map and Table 2). A greater than 1.8 -fold difference existed between the midpoint of the lowest quartile ( $23 \%$ ) and that of the highest quartile ( $41 \%$ ). Many of the states in the eastern half of the United States did not have sufficient data (i.e., <50 BRFSS respondents) to calculate a stable prevalence.

The national prevalence for all AI/AN people was $30 \%$. Prevalences were similar for women ( $29 \%$ ) and men ( $31 \%$ ). The prevalence for AI/AN people was similar to those for other U.S. racial/ethnic groups (see Figure 2).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of high cholesterol and are more representative of AI/AN people living in urban rather than rural areas or on reservations (see Appendix B for details).

Prevalence of Self-Reported High Cholesterol 2001 and 2003 Combined


## American Indians and Alaska Natives Ages 18 Years and Older



Table 2. Prevalence of Self-Reported High Cholesterol Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| Alabama | 52 | 47.4 | 34.6-60.3 | 24 | $\ddagger$ |  | 28 | $\ddagger$ |  |
| Alaska | 579 | 22.6 | 18.2-27.0 | 334 | 21.0 | 15.7-26.4 | 245 | 24.4 | 17.4-31.3 |
| Arizona | 164 | 20.4 | 11.9-28.9 | 111 | 13.7 | 6.6-20.8 | 53 | 37.3 | 21.9-52.6 |
| Arkansas | 76 | 27.5 | 18.8-36.2 | 50 | 26.8 | 17.4-36.2 | 26 | $\ddagger$ |  |
| California | 68 | 40.6 | 28.8-52.3 | 44 | $\ddagger$ |  | 24 | $\ddagger$ |  |
| Colorado | 36 | $\ddagger$ |  | 26 | $\ddagger$ |  | 10 | $\ddagger$ |  |
| Connecticut | 59 | 28.7 | 17.2-40.2 | 25 | $\pm$ |  | 34 | $\ddagger$ |  |
| Delaware | 53 | 26.2 | 14.1-38.2 | 29 | $\ddagger$ |  | 24 | $\ddagger$ |  |
| District of Columbia | 23 | $\ddagger$ |  | 9 | $\ddagger$ |  | 14 | $\ddagger$ |  |
| Florida | 77 | 33.6 | 21.1-46.0 | 41 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Georgia | 77 | 20.6 | 11.2-29.9 | 39 | $\ddagger$ |  | 38 | $\ddagger$ |  |
| Hawaii | 37 | $\ddagger$ |  | 17 | $\ddagger$ |  | 20 | $\ddagger$ |  |
| Idaho | 88 | 33.5 | 23.5-43.4 | 58 | 33.0 | 20.5-45.4 | 30 | $\ddagger$ |  |
| Illinois | 51 | 29.2 | 16.6-41.8 | 30 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| Indiana | 48 | $\pm$ |  | 27 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| lowa | 15 | $\ddagger$ |  | 9 | $\ddagger$ |  | 6 | $\ddagger$ |  |
| Kansas | 69 | 25.1 | 15.6-34.6 | 41 | $\ddagger$ |  | 28 | $\ddagger$ |  |
| Kentucky | 59 | 32.5 | 19.1-45.9 | 21 | $\ddagger$ |  | 38 | $\ddagger$ |  |
| Louisiana | 68 | 33.8 | 21.4-46.1 | 44 | $\ddagger$ |  | 24 | $\ddagger$ |  |
| Maine | 44 | $\ddagger$ |  | 26 | $\ddagger$ |  | 18 | $\ddagger$ |  |
| Maryland | 64 | 26.9 | 16.2-37.6 | 35 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Massachusetts | 76 | 34.7 | 24.2-45.1 | 48 | $\ddagger$ |  | 28 | $\ddagger$ |  |
| Michigan | 44 | $\ddagger$ | 18.9-50.6 | 23 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| Minnesota | 40 | $\ddagger$ |  | 23 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| Mississippi | 27 | $\ddagger$ |  | 15 | $\ddagger$ |  | 12 | $\ddagger$ |  |
| Missouri | 71 | 27.0 | 15.5-38.5 | 38 | $\ddagger$ |  | 33 | $\ddagger$ |  |
| Montana | 485 | 26.1 | 20.7-47.3 | 305 | 28.9 | 21.3-36.4 | 180 | 23.1 | 16.1-30.0 |
| Nebraska | 30 | $\ddagger$ |  | 20 | $\ddagger$ |  | 10 | $\ddagger$ |  |
| Nevada | 59 | 40.6 | 26.2-54.9 | 27 | $\ddagger$ |  | 32 | $\ddagger$ |  |
| New Hampshire | 52 | 34.1 | 20.4-47.8 | 28 | $\pm$ |  | 24 | $\ddagger$ |  |
| New Jersey | 74 | 30.8 | 20.0-41.7 | 44 | $\ddagger$ |  | 30 | $\ddagger$ |  |
| New Mexico | 233 | 24.9 | 19.3-30.4 | 136 | 22.3 | 15.8-28.9 | 97 | 27.0 | 17.7-36.3 |

[^2]
## Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 52 | 32.5 | 18.1-46.8 | 35 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| North Carolina | 216 | 27.4 | 19.2-35.5 | 134 | 29.8 | 19.0-40.6 | 82 | 24.2 | 12.7-35.6 |
| North Dakota | 107 | 29.0 | 19.8-38.2 | 67 | 30.9 | 20.0-41.9 | 40 | $\ddagger$ |  |
| Ohio | 40 | $\ddagger$ |  | 22 | $\ddagger$ |  | 18 | $\ddagger$ |  |
| Oklahoma | 639 | 24.2 | 20.8-27.7 | 409 | 25.9 | 21.2-30.6 | 230 | 22.8 | 17.6-28.1 |
| Oregon | 76 | 26.9 | 16.3-37.5 | 42 | $\ddagger$ |  | 34 | $\ddagger$ |  |
| Pennsylvania | 27 | $\ddagger$ |  | 14 | $\ddagger$ |  | 13 | $\ddagger$ |  |
| Rhode Island | 63 | 29.1 | 18.4-39.7 | 33 | $\ddagger$ |  | 30 | $\ddagger$ |  |
| South Carolina | 68 | 27.0 | 16.2-37.7 | 38 | $\ddagger$ |  | 30 | $\ddagger$ |  |
| South Dakota | 328 | 27.3 | 22.2-32.4 | 217 | 24.2 | 17.6-30.8 | 111 | 31.0 | 23.8-38.2 |
| Tennessee | 31 | $\ddagger$ |  | 17 | $\ddagger$ |  | 14 | $\ddagger$ |  |
| Texas | 83 | 33.1 | 23.9-42.3 | 44 | $\ddagger$ |  | 39 | $\ddagger$ |  |
| Utah | 36 | $\ddagger$ |  | 21 | $\ddagger$ |  | 15 | $\ddagger$ |  |
| Vermont | 58 | 37.0 | 24.9-49.2 | 30 | $\pm$ |  | 28 | $\ddagger$ |  |
| Virginia | 59 | 29.8 | 16.8-42.8 | 29 | $\ddagger$ |  | 30 | $\ddagger$ |  |
| Washington | 280 | 32.2 | 24.3-40.4 | 146 | 29.4 | 19.9-38.9 | 134 | 35.0 | 24.0-46.0 |
| West Virginia | 45 | $\pm$ |  | 22 | $\ddagger$ |  | 23 | $\ddagger$ |  |
| Wisconsin | 68 | 23.1 | 13.6-32.7 | 39 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Wyoming | 72 | 24.5 | 15.1-33.9 | 43 | $\pm$ |  | 29 | $\ddagger$ |  |
| United States | 5346 | 30.0 | 27.3-32.7 | 3149 | 28.6 | 25.3-31.9 | 2197 | 31.1 | 27.1-35.1 |
| Region ${ }^{\text {§ }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 1620 | 29.1 | 25.3-32.9 | 971 | 31.7 | 26.4-37.0 | 649 | 26.5 | 21.3-31.8 |
| Northern Plains | 1237 | 29.2 | 23.7-34.7 | 773 | 26.9 | 20.4-33.3 | 464 | 31.3 | 23.0-39.5 |
| Southwest | 528 | 22.9 | 17.4-28.3 | 321 | 18.6 | 12.5-24.7 | 207 | 30.3 | 21.5-39.1 |
| Pacific Coast | 512 | 37.8 | 28.9-46.8 | 290 | 29.3 | 19.0-39.7 | 222 | 47.0 | 34.0-60.0 |
| Alaska | 579 | 22.6 | 18.2-27.0 | 334 | 21.0 | 15.7-26.4 | 245 | 24.4 | 17.4-31.3 |

 2000 U.S. population, and are weighted for the probability of sampling
${ }^{\dagger}$ Confidence interval.
$\ddagger$ Estimates for states with $<50$ respondents are considered unstable and are not reported.
${ }^{8}$ The Indian Health Service (IHS) provides services to American Indians and Alaska Natives in 35 states. Only these 35 states were used for the regional estimates. Regions are defined as follows: East = Alabama, Connecticut, Florida, Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, lowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

## Cholesterol Screening

Screening for blood cholesterol levels in the general population is important because high cholesterol can be lowered with medication and behavior change. Studies have shown that a $1 \%$ decrease in cholesterol level can reduce the risk for heart disease and stroke by $2 \%$ (MMWR 1992;41[36]). Cholesterol levels $<200 \mathrm{mg} / \mathrm{dL}$ are considered desirable (National Cholesterol Education Program, http://hin.nhlbi.nih.gov/ncep.htm).

In 1998 , about $67 \%$ of U.S. residents ages $\geq 20$ years reported having their cholesterol level checked within the past 5 years (Healthy People 2010). Healthy People 2010 calls for raising this proportion to $80 \%$. National guidelines recommend that people ages $\geq 20$ years have their cholesterol measured at least once every 5 years (National Heart, Lung, and Blood Institute).

The IHS is working to increase cholesterol screening among American Indian and Alaska Native (AI/AN) people. It is developing an electronic system to notify health care providers of current national guidelines, remind them to screen

Figure 3.
Prevalence of Self-Reported Cholesterol Screening Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001 and 2003 Combined

patients, and track compliance. The IHS also is administering numerous diabetes and cardiovascular health grants that include strategies (e.g., cholesterol screening) to reduce cardiovascular risk factors.

CDC currently funds 32 states and the District of Columbia to 1) develop strategies, such as policy, environmental, and systems changes, that improve prevalence of cholesterol screening and 2) conduct activities to reduce the burden of heart disease and stroke.

## Definition of Cholesterol Screening

We defined self-reported cholesterol screening on the basis of "yes" responses to the following Behavioral Risk Factor Surveillance System (BRFSS) question: "Have you ever had your blood cholesterol checked?" This question was only asked in odd-numbered years, so the data for this analysis are from 2001 and 2003. Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found state-to-state differences in cholesterol screening prevalence among AI/AN people (see facing map and Table 3). A 1.3 -fold difference existed between the midpoint of the lowest quartile ( $61 \%$ ) and that of the highest quartile ( $82 \%$ ).

The national prevalence for all AI/AN people was $71 \%$. Prevalences were similar for women ( $72 \%$ ) and men ( $71 \%$ ). The prevalence for AI/AN people was higher than that for Hispanics, the same as Asians, and somewhat lower than other U.S. racial/ethnic groups (see Figure 3).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely higher than the true prevalence of cholesterol screening and are more representative of AI/AN people living in urban rather than rural areas or on reservations (see Appendix B for details).

## Prevalence of Self-Reported Cholesterol Screening 2001 and 2003 Combined



## American Indians and Alaska Natives Ages 18 Years and Older



Table 3. Prevalence of Self-Reported Cholesterol Screening Among American Indians and Alaska Natives,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\text {t }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ |
| Alabama | 75 | 66.4 | 55.3-77.5 | 35 | $\pm$ |  | 40 | $\pm$ | 49.9-77.6 |
| Alaska | 992 | 59.6 | 55.4-63.7 | 560 | 59.0 | 53.8-64.3 | 432 | 60.2 | 53.9-66.6 |
| Arizona | 268 | 59.8 | 52.0-67.7 | 175 | 61.5 | 51.6-71.4 | 93 | 56.8 | 45.1-68.6 |
| Arkansas | 104 | 66.3 | 56.0-76.5 | 62 | 79.0 | 68.3-89.7 | 42 | $\pm$ |  |
| California | 83 | 75.0 | 63.4-86.6 | 55 | 79.0 | 67.5-90.5 | 28 | 73.3 | 57.2-89.4 |
| Colorado | 46 | 80.2 | 70.3-90.1 | 31 | $\ddagger$ |  | 15 | $\ddagger$ |  |
| Connecticut | 72 | 82.1 | 71.4-92.9 | 35 | $\pm$ |  | 37 | $\pm$ |  |
| Delaware | 63 | 81.8 | 72.5-91.1 | 34 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| District of Columbia | 23 | $\ddagger$ |  | 9 | $\pm$ |  | 14 | $\pm$ |  |
| Florida | 99 | 76.7 | 66.8-86.6 | 52 | 68.2 | 54.0-82.5 | 47 | $\ddagger$ |  |
| Georgia | 96 | 72.7 | 64.5-81.0 | 52 | 67.7 | 59.2-76.2 | 44 | $\ddagger$ |  |
| Hawaii | 43 | $\ddagger$ |  | 21 | $\ddagger$ |  | 22 | $\ddagger$ |  |
| Idaho | 118 | 63.0 | 52.8-73.2 | 72 | 69.1 | 56.0-82.2 | 46 | $\pm$ |  |
| Illinois | 72 | 60.2 | 47.3-73.1 | 42 | $\ddagger$ |  | 30 | $\ddagger$ |  |
| Indiana | 66 | 71.2 | 61.2-81.1 | 34 | $\pm$ |  | 32 | $\pm$ |  |
| lowa | 26 | $\ddagger$ |  | 16 | $\ddagger$ |  | 10 | $\pm$ |  |
| Kansas | 87 | 72.2 | 62.0-82.4 | 49 | $\ddagger$ |  | 38 | $\ddagger$ |  |
| Kentucky | 67 | 79.1 | 68.4-89.8 | 27 | $\ddagger$ |  | 40 | $\pm$ |  |
| Louisiana | 89 | 72.9 | 63.7-82.1 | 59 | 69.6 | 59.1-80.1 | 30 | $\pm$ |  |
| Maine | 61 | 66.3 | 55.2-77.4 | 35 | $\ddagger$ |  | 26 | $\ddagger$ |  |
| Maryland | 69 | 87.2 | 79.1-95.3 | 36 | $\pm$ |  | 33 | $\ddagger$ |  |
| Massachusetts | 93 | 77.8 | 69.5-86.0 | 58 | 87.5 | 81.0-93.9 | 35 | $\ddagger$ |  |
| Michigan | 56 | 66.8 | 56.9-76.7 | 31 |  |  | 25 | $\ddagger$ |  |
| Minnesota | 52 | 72.8 | 59.6-86.0 | 30 | $\ddagger$ |  | 22 | $\ddagger$ |  |
| Mississippi | 44 | , |  | 27 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| Missouri | 85 | 73.7 | 63.7-83.7 | 44 | $\ddagger$ |  | 41 | $\ddagger$ |  |
| Montana | 725 | 65.6 | 61.0-70.2 | 438 | 69.6 | 64.2-75.0 | 287 | 61.6 | 54.1-69.1 |
| Nebraska | 43 | $\ddagger$ |  | 26 |  |  | 17 | $\pm$ |  |
| Nevada | 82 | 69.6 | 58.0-81.3 | 38 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| New Hampshire | 71 | 71.6 | 59.9-83.2 | 36 | キ |  | 35 | $\ddagger$ |  |
| New Jersey | 91 | 72.2 | 59.1-85.3 | 52 | 86.6 | 76.5-96.8 | 39 | + |  |
| New Mexico | 351 | 66.0 | 60.3-71.8 | 197 | 69.6 | 61.8-77.3 | 154 | 62.4 | 53.9-70.9 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.
by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 72 | 70.8 | 62.1-79.6 | 46 | $\ddagger$ |  | 26 | $\ddagger$ |  |
| North Carolina | 289 | 70.2 | 61.2-79.2 | 187 | 74.7 | 68.2-81.3 | 102 | 66.2 | 52.2-80.3 |
| North Dakota | 160 | 66.6 | 58.8-74.3 | 100 | 64.9 | 55.3-74.4 | 60 | 69.2 | 57.2-81.3 |
| Ohio | 61 | 56.4 | 45.8-67.0 | 32 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Oklahoma | 867 | 70.1 | 66.8-73.5 | 553 | 69.0 | 64.7-73.4 | 314 | 71.6 | 66.6-76.6 |
| Oregon | 104 | 70.4 | 61.6-79.2 | 53 | 82.3 | 72.0-92.7 | 51 | 62.9 | 50.2-75.6 |
| Pennsylvania | 37 | $\ddagger$ | 57.5-89.4 | 20 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| Rhode Island | 69 | 82.0 | 74.7-89.3 | 36 | $\ddagger$ |  | 33 | $\ddagger$ |  |
| South Carolina | 87 | 73.6 | 64.5-82.7 | 43 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| South Dakota | 483 | 64.9 | 60.3-69.4 | 311 | 66.2 | 60.7-71.7 | 172 | 62.7 | 55.0-70.3 |
| Tennessee | 38 | $\ddagger$ |  | 21 | $\ddagger$ |  | 17 | $\ddagger$ |  |
| Texas | 100 | 79.1 | 71.1-87.2 | 54 | 69.4 | 58.6-80.3 | 46 | $\ddagger$ |  |
| Utah | 54 | 64.9 | 50.4-79.4 | 29 | $\ddagger$ |  | 25 | $\ddagger$ |  |
| Vermont | 74 | 66.4 | 56.2-76.6 | 34 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Virginia | 68 | 87.9 | 79.6-96.3 | 32 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Washington | 377 | 69.1 | 62.6-75.6 | 201 | 69.1 | 61.7-76.6 | 176 | 68.3 | 59.2-77.5 |
| West Virginia | 59 | 63.3 | 52.3-74.4 | 26 | $\ddagger$ |  | 33 | $\ddagger$ |  |
| Wisconsin | 89 | 71.8 | 60.2-83.4 | 48 | $\ddagger$ |  | 41 | $\ddagger$ |  |
| Wyoming | 98 | 68.7 | 59.7-77.7 | 59 | 66.4 | 55.7-77.1 | 39 | $\ddagger$ |  |
| United States | 7498 | 71.0 | 68.7-73.3 | 4353 | 71.9 | 68.8-75.0 | 3145 | 70.6 | 67.4-73.8 |
| Region ${ }^{\text {s }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 2141 | 26.5 | 23.5-29.5 | 1289 | 27.2 | 23.6-30.8 | 852 | 25.9 | 21.4-30.4 |
| Northern Plains | 1798 | 30.6 | 26.0-35.3 | 1093 | 29.1 | 23.0-35.2 | 705 | 31.3 | 25.3-37.3 |
| Southwest | 801 | 35.0 | 30.3-39.6 | 470 | 32.4 | 25.9-38.9 | 331 | 37.7 | 31.5-43.8 |
| Pacific Coast | 682 | 72.4 | 64.0-80.9 | 381 | 77.3 | 67.8-86.9 | 301 | 69.6 | 58.5-80.7 |
| Alaska | 992 | 40.4 | 36.3-44.6 | 560 | 41.0 | 35.7-46.2 | 432 | 39.8 | 33.4-46.1 |

[^3]Diabetes is the sixth leading cause of death in the United States, accounting for more than 200,000 deaths each year. More than 18 million Americans have diabetes, and the disease costs nearly $\$ 132$ billion annually (http://www.cdc.gov/nccdphp/ aag/aag_ddt.htm). Surprisingly, about one-third of people with diabetes are unaware that they have the disease (Diabetes Care 1998;21:518-24).

Adults with diabetes are 2-4 times more likely than those without diabetes to die of heart disease or stroke (http://www. cdc.gov/diabetes). High blood pressure, high blood cholesterol, and obesity-all risk factors for heart disease and stroke-also are common among people with diabetes.

Diabetes was once rare among American Indian and Alaska Native (AI/AN) people, but the prevalence is rising dramatically. The IHS recently received a significant increase in funding to prevent and control diabetes among AI/AN people. In addition, it has funded numerous community grants and prevention efforts, as well as an agressive medical intervention program.

Figure 4.
Prevalence of Self-Reported Diabetes Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001-2003


In 2001, CDC and the National Institutes of Health conducted a landmark clinical trial that found that Americans at risk for diabetes can reduce this risk $58 \%$ with lifestyle changes in diet and exercise. CDC also supports 59 state and territorial diabetes prevention and control programs (http://www.cdc. gov/diabetes/news/docs/dpp.htm).

## Definition of Diabetes

We defined self-reported diabetes on the basis of "yes" responses to the following Behavioral Risk Factor Surveillance System (BRFSS) question during 2001-2003: "Have you ever been told by a doctor that you have diabetes?" Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found dramatic state-to-state differences in the prevalence of diabetes among AI/AN people (see facing map and Table 4). A threefold difference existed between the midpoint of the lowest quartile ( $5.7 \%$ ) and that of the highest quartile ( $18 \%$ ).

The national prevalence for all $\mathrm{AI} / \mathrm{AN}$ people was $12 \%$. Prevalences were similar for women ( $12 \%$ ) and men ( $11 \%$ ). They also were highest in the Northern Plains (14\%) and lowest in Alaska (5\%) (see Table 4). The prevalence for AI/AN people was the same as that for blacks (see Figure 4).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of diabetes and are more representative of AI/AN people living in urban rather than rural areas or on reservations (see Appendix B for details).

## Prevalence of Self-Reported Diabetes 2001-2003



## American Indians and Alaska Natives Ages 18 Years and Older



Table 4. Prevalence of Self-Reported Diabetes Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ |
| Alabama | 118 | 10.6 | 3.9-17.3 | 59 | 13.6 | 2.2-25.1 | 59 | 10.2 | 1.4-18.9 |
| Alaska | 1581 | 5.1 | 3.3-6.9 | 912 | 4.7 | 2.7-6.7 | 669 | 5.6 | 2.6-8.6 |
| Arizona | 395 | 15.0 | 9.6-20.4 | 254 | 15.4 | $9.2-21.6$ | 141 | 14.1 | 5.7-22.5 |
| Arkansas | 168 | 7.8 | 3.7-11.8 | 94 | 8.8 | 3.6-14.0 | 74 | 6.4 | 0-12.9 |
| California | 120 | 10.4 | 4.5-16.3 | 75 | 12.1 | 4.1-20.0 | 45 | $\ddagger$ |  |
| Colorado | 80 | 10.4 | 0.9-19.8 | 53 | 8.2 | 0-17.4 | 27 | $\ddagger$ |  |
| Connecticut | 102 | 6.6 | 1.4-11.8 | 51 | 4.9 | 0-11.5 | 51 | 7.6 | 0.9-14.3 |
| Delaware | 86 | 13.7 | $6.1-21.2$ | 46 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| District of Columbia | 32 | $\ddagger$ | 5.6-20.9 | 14 | $\ddagger$ |  | 18 |  |  |
| Florida | 155 | 13.2 | 5.7-20.8 | 79 | 12.5 | 2.7-22.4 | 76 | 13.5 | 3.0-24.1 |
| Georgia | 139 | 3.2 | 0.6-5.7 | 73 | 1.3 | 0-3.3 | 66 | 3.7 | 0.4-6.9 |
| Hawaii | 82 | 6.6 | 1.3-11.9 | 45 | $\ddagger$ |  | 37 | $\ddagger$ |  |
| Idaho | 189 | 12.0 | 6.9-17.1 | 115 | 14.9 | 7.6-22.1 | 74 | 8.4 | 2.4-14.5 |
| Illinois | 117 | 10.1 | 5.1-15.0 | 68 | 10.7 | 3.8-17.6 | 49 | $\ddagger$ |  |
| Indiana | 118 | 8.4 | $3.0-13.7$ | 63 | 11.0 | 3.8-18.3 | 55 | 6.2 | 0-13.3 |
| lowa | 39 | $\ddagger$ |  | 25 | , |  | 14 | , |  |
| Kansas | 137 | 8.0 | 3.6-12.3 | 80 | 12.1 | 4.2-20.0 | 57 | 5.6 | 0.8-10.4 |
| Kentucky | 99 | 14.4 | 3.6-25.2 | 36 | $\ddagger$ |  | 63 | 9.0 | 0.7-17.2 |
| Louisiana | 150 | 7.4 | 2.6-12.1 | 97 | 9.4 | 2.1-16.6 | 53 | 8.0 | 0-17.0 |
| Maine | 90 | 9.2 | 2.9-15.6 | 50 | 11.0 | 2.9-19.1 | 40 | $\ddagger$ |  |
| Maryland | 102 | 12.3 | 3.6-20.9 | 52 | 9.9 | 2.1-17.6 | 50 | 10.8 | 0.3-21.3 |
| Massachusetts | 148 | 8.2 | 2.2-14.3 | 89 | 7.6 | 1.9-13.2 | 59 | 9.0 | 0-19.7 |
| Michigan | 102 | 17.5 | 9.9-25.1 | 55 | 15.1 | 5.4-24.8 | 47 | $\ddagger$ |  |
| Minnesota | 85 | 12.7 | 6.0-19.3 | 49 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Mississippi | 63 | 21.5 | 10.9-32.1 | 42 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| Missouri | 159 | 6.3 | 2.6-10.1 | 77 | 5.4 | 0-11.3 | 82 | 8.2 | 2.8-13.7 |
| Montana | 1088 | 12.8 | 10.2-15.4 | 659 | 12.8 | 9.4-16.3 | 429 | 13.2 | 9.4-17.0 |
| Nebraska | 74 | 8.0 | 1.3-14.6 | 45 | $\ddagger$ |  | 29 | , |  |
| Nevada | 132 | 4.8 | 1.9-7.7 | 68 | 6.2 | 1.0-11.4 | 64 | 6.3 | 0.8-11.7 |
| New Hampshire | 126 | 8.1 | 3.2-13.0 | 58 | 6.1 | 0.3-12.0 | 68 | 9.5 | 2.4-16.6 |
| New Jersey | 129 | 10.8 | 3.0-18.6 | 73 | 5.3 | 0-10.5 | 56 | 16.2 | 3.4-28.9 |
| New Mexico | 552 | 12.2 | 8.6-15.7 | 314 | 14.2 | 9.5-18.9 | 238 | 10.0 | 5.0-15.0 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 107 | 17.3 | 9.7-24.9 | 66 | 17.6 | 6.5-28.8 | 41 | $\ddagger$ |  |
| North Carolina | 481 | 13.1 | 8.3-17.9 | 306 | 16.8 | 10.4-23.1 | 175 | 9.6 | 2.5-16.8 |
| North Dakota | 250 | 12.7 | 7.2-18.2 | 156 | 13.1 | 6.4-19.8 | 94 | 12.8 | 3.2-22.4 |
| Ohio | 98 | 17.8 | $9.2-26.4$ | 46 | $\ddagger$ | 0.1-19.0 | 52 | 17.3 | 8.2-26.5 |
| Oklahoma | 1372 | 13.6 | 11.5-15.6 | 858 | 13.7 | 11.2-16.1 | 514 | 13.4 | 10.0-16.8 |
| Oregon | 164 | 12.8 | 7.1-18.5 | 89 | 11.2 | 3.8-18.7 | 75 | 14.4 | 6.0-22.8 |
| Pennsylvania | 98 | 10.4 | 4.3-16.4 | 48 | $\ddagger$ |  | 50 | 13.2 | 3.3-23.0 |
| Rhode Island | 99 | 8.2 | 2.9-13.4 | 53 | 8.3 | 1.7-15.0 | 46 | \# |  |
| South Carolina | 122 | 17.9 | 10.8-25.1 | 64 | 13.9 | 8.5-19.3 | 58 | 18.3 | 7.0-29.6 |
| South Dakota | 670 | 18.5 | 14.7-22.4 | 426 | 17.3 | 12.8-21.7 | 244 | 20.3 | 14.0-26.6 |
| Tennessee | 56 | 12.4 | 2.0-22.8 | 27 | $\ddagger$ |  | 29 | , |  |
| Texas | 164 | 10.8 | 5.0-16.5 | 95 | 9.1 | 3.2-15.1 | 69 | 13.4 | 2.5-24.2 |
| Utah | 90 | 5.0 | 0-10.5 | 46 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| Vermont | 119 | 10.0 | 4.4-15.6 | 48 | $\ddagger$ |  | 71 | 12.6 | 5.1-20.0 |
| Virginia | 101 | 10.1 | 3.1-17.2 | 47 | $\pm$ |  | 54 | 11.8 | 3.6-20.1 |
| Washington | 475 | 10.8 | 6.8-14.8 | 256 | 16.7 | $9.5-23.9$ | 219 | 6.1 | 2.2-10.0 |
| West Virginia | 76 | 14.2 | 6.9-21.6 | 36 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Wisconsin | 144 | 13.7 | $6.1-21.3$ | 76 | 21.2 | 11.0-31.4 | 68 | 5.9 | 0.7-11.1 |
| Wyoming | 144 | 13.7 | 7.6-19.8 | 84 | 18.3 | 9.9-26.6 | 60 | 7.1 | 0-14.9 |
| United States | 11587 | 11.9 | 10.4-13.4 | 6697 | 12.4 | 10.3-14.5 | 4890 | 11.4 | 9.4-13.4 |
| Region ${ }^{\text {8 }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 3406 | 13.0 | 10.7-15.4 | 2037 | 13.4 | 10.3-16.4 | 1369 | 12.7 | 9.1-16.3 |
| Northern Plains | 2714 | 13.6 | 10.9-16.4 | 1638 | 15.1 | 11.3-18.9 | 1076 | 12.2 | 8.3-16.1 |
| Southwest | 1249 | 11.6 | 8.8-14.5 | 735 | 11.9 | 8.5-15.3 | 514 | 11.5 | 6.8-16.3 |
| Pacific Coast | 948 | 11.0 | 6.5-15.5 | 535 | 13.0 | 6.6-19.4 | 413 | 7.7 | 3.1-12.4 |
| Alaska | 1581 | 5.1 | 3.3-6.9 | 912 | 4.7 | 2.7-6.7 | 669 | 5.6 | 2.6-8.6 |

 for the probability of sampling

+ Confidence interval.
\# Estimates for states with $<50$ respondents are considered unstable and are not reported.
§ The Indian Health Service (lHS) provides services to American Indians and Alaska Natives in 35 states. Only these 35 states were used for the regional estimates. Regions are defined as follows: East = Alabama, Connecticut, Florida Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, lowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

Figure 5.
Prevalence of Self-Reported Cigarette Smoking Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001-2003

Cigarette smoking is a major cause of heart disease and stroke, accounting for $30 \%$ of all U.S. deaths from coronary heart disease (Circulation 1997;96:3243-7). Cigarette smokers are 2-4 times more likely than nonsmokers to develop coronary heart disease (Reducing the Health Consequences of Smoking: 25 Years of Progress; 1989) and twice as likely to suffer a stroke (Circulation 1997;96:3243-7). For both conditions, the smoking-related risk for death increases if other CHD risk factors are present.

CDC provides national leadership for a comprehensive approach to reducing tobacco use that includes preventing young people from starting to smoke, eliminating human exposure to secondhand smoke, promoting smoking cessation, and eliminating disparities in tobacco use among different populations. CDC also funds eight tribal tobacco control support centers, which provide resources for tobacco prevention and cessation in American Indian and Alaska Native (AI/AN) communities.

Tobacco control programs in AI/AN communities must distinguish between traditional ceremonial use and addictive

abuse of tobacco. In ceremonial settings, small amounts of tobacco are used, and the potential for addiction or health problems is low (BMJ 1997;75:1690-3). IHS offers numerous tobacco cessation programs, many of which were developed with partners and other federal agencies. In areas with high smoking prevalences, IHS actively promotes cessation through clinic-based and community programs.

## Definition of Cigarette Smoking

We defined self-reported current cigarette smoking on the basis of responses to two questions from the Behavioral Risk Factor Surveillance System (BRFSS) during 2001-2003. The first was, "Have you smoked at least 100 cigarettes in your entire life?" Respondents who answered "yes" were then asked a follow-up question: "Do you now smoke cigarettes every day, some days, or not at all?" People who reported smoking at least 100 cigarettes in their lifetime and smoking now every day or some days were defined as current smokers. Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found dramatic state-to-state differences in smoking prevalence among AI/AN people (see facing map and Table 5). A twofold difference existed between the midpoint of the lowest quartile ( $21 \%$ ) and that of the highest quartile ( $50 \%$ ). The national prevalence for all AI/AN people was $38 \%$, with men ( $42 \%$ ) smoking more than women ( $34 \%$ ). This gender difference is similar to that observed for the general U.S. population. The Northern Plains ( $41.3 \%$ ) and Alaska ( $41.1 \%$ ) had the highest prevalence ( $41 \%$ ), whereas the Southwest had the lowest ( $21 \%$ ) (see Table 5). AI/AN people had the highest smoking prevalence among U.S. racial/ethnic groups (see Figure 5).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of cigarette smoking and are more representative of AI/AN people living in urban rather than rural areas or on reservations (see Appendix B for details).

Prevalence of Self-Reported Cigarette Smoking 2001-2003


## American Indians and Alaska Natives Ages 18 Years and Older



Table 5. Prevalence of Self-Reported Cigarette Smoking Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{+}$ |
| Alabama | 118 | 38.8 | 28.7-48.8 | 59 | 35.7 | 24.3-47.1 | 59 | 39.9 | 26.3-53.6 |
| Alaska | 1573 | 41.1 | 37.4-44.7 | 904 | 37.3 | 32.9-41.8 | 669 | 45.3 | 39.7-50.9 |
| Arizona | 396 | 13.8 | 9.6-18.0 | 255 | 12.8 | 7.7-17.9 | 141 | 15.1 | 8.3-21.9 |
| Arkansas | 169 | 44.4 | 35.8-52.9 | 95 | 45.3 | 34.0-56.6 | 74 | 43.8 | 31.5-56.0 |
| California | 120 | 36.7 | 27.1-46.2 | 75 | 31.3 | 20.2-42.4 | 45 | $\ddagger$ |  |
| Colorado | 79 | 43.7 | 29.8-57.5 | 52 | 52.1 | 36.3-67.9 | 27 | $\ddagger$ |  |
| Connecticut | 101 | 42.8 | 32.5-53.0 | 50 | 37.0 | 23.1-51.0 | 51 | 42.6 | 30.1-55.1 |
| Delaware | 86 | 34.6 | 23.3-45.9 | 46 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| District of Columbia | 31 | $\ddagger$ |  | 14 | $\ddagger$ |  | 17 | $\pm$ |  |
| Florida | 156 | 42.7 | 32.0-53.5 | 80 | 41.1 | 30.5-51.6 | 76 | 39.8 | 24.3-55.4 |
| Georgia | 139 | 46.2 | 36.0-56.4 | 73 | 33.5 | 20.1-46.8 | 66 | 53.3 | 38.6-67.9 |
| Hawaii | 82 | 23.5 | 11.1-35.9 | 45 | $\ddagger$ |  | 37 | $\ddagger$ |  |
| Idaho | 189 | 39.6 | 32.1-47.1 | 115 | 38.4 | 28.9-47.9 | 74 | 40.9 | 28.7-53.2 |
| Illinois | 117 | 49.3 | 39.2-59.3 | 68 | 42.9 | 31.4-54.3 | 49 | $\ddagger$ |  |
| Indiana | 119 | 44.3 | 34.6-54.0 | 63 | 37.5 | 25.0-49.9 | 56 | 53.2 | 39.5-67.0 |
| lowa | 39 | $\pm$ |  | 25 | $\ddagger$ |  | 14 | $\pm$ |  |
| Kansas | 137 | 32.1 | 23.9-40.2 | 80 | 35.5 | 24.7-46.3 | 57 | 29.1 | 17.3-40.9 |
| Kentucky | 99 | 38.5 | 27.5-49.4 | 36 | $\ddagger$ |  | 63 | 43.0 | 27.4-58.6 |
| Louisiana | 150 | 37.4 | 29.0-45.7 | 97 | 34.5 | 24.0-45.0 | 53 | 38.4 | 25.7-51.2 |
| Maine | 89 | 34.2 | 24.7-43.8 | 49 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Maryland | 102 | 37.4 | 27.0-47.8 | 52 | 19.0 | $9.0-29.0$ | 50 | 46.3 | 32.8-59.8 |
| Massachusetts | 148 | 36.3 | 26.8-45.9 | 89 | 31.7 | 20.7-42.7 | 59 | 43.9 | 28.3-59.5 |
| Michigan | 101 | 37.0 | 27.1-47.0 | 54 | 32.8 | 19.6-46.0 | 47 | $\ddagger$ |  |
| Minnesota | 85 | 49.4 | 38.6-60.3 | 49 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Mississippi | 62 | 39.0 | 26.4-51.6 | 41 | $\ddagger$ |  | 21 | $\pm$ |  |
| Missouri | 158 | 48.9 | 39.5-58.4 | 77 | 33.6 | 22.1-45.0 | 81 | 54.1 | 42.5-65.6 |
| Montana | 1089 | 42.5 | 38.3-46.8 | 659 | 45.7 | 40.2-51.3 | 430 | 38.7 | 32.3-45.2 |
| Nebraska | 74 | 41.2 | 29.7-52.7 | 45 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Nevada | 132 | 40.3 | 29.1-51.6 | 68 | 36.2 | 21.2-51.1 | 64 | 47.5 | 32.4-62.6 |
| New Hampshire | 126 | 32.3 | 23.6-41.1 | 58 | 40.3 | 26.8-53.8 | 68 | 26.9 | 17.1-36.7 |
| New Jersey | 129 | 25.6 | 14.3-36.9 | 73 | 23.6 | 10.5-36.7 | 56 | 26.8 | 10.0-43.5 |
| New Mexico | 552 | 17.1 | 12.6-21.7 | 314 | 9.9 | 6.3-13.4 | 238 | 24.7 | 16.8-32.6 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2000-2003*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 107 | 34.8 | 23.3-46.2 | 66 | 21.5 | 11.2-31.8 | 41 | $\ddagger$ |  |
| North Carolina | 481 | 33.7 | 26.3-41.0 | 305 | 29.4 | 21.3-37.5 | 176 | 37.6 | 27.3-47.8 |
| North Dakota | 250 | 48.4 | 41.6-55.2 | 156 | 58.1 | 49.5-66.6 | 94 | 35.3 | 25.6-45.0 |
| Ohio | 97 | 53.7 | 41.9-65.6 | 45 | $\ddagger$ |  | 52 | 65.3 | 53.5-77.0 |
| Oklahoma | 1371 | 37.9 | 34.7-41.0 | 858 | 33.9 | 30.2-37.6 | 513 | 42.3 | 37.4-47.3 |
| Oregon | 164 | 39.7 | 31.6-47.9 | 89 | 39.0 | 26.8-51.2 | 75 | 42.8 | 32.7-52.8 |
| Pennsylvania | 98 | 35.2 | 24.2-46.3 | 48 | $\ddagger$ |  | 50 | 35.3 | 21.6-49.0 |
| Rhode Island | 97 | 55.1 | 43.7-66.6 | 52 | 57.8 | 43.7-72.0 | 45 | $\ddagger$ |  |
| South Carolina | 122 | 43.1 | 33.6-52.5 | 63 | 37.6 | 26.8-48.5 | 59 | 41.2 | 28.1-54.3 |
| South Dakota | 670 | 44.6 | 40.0-49.2 | 426 | 42.4 | 37.1-47.7 | 244 | 49.0 | 41.5-56.5 |
| Tennessee | 56 | 39.3 | 25.9-52.6 | 27 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Texas | 164 | 43.1 | 34.8-51.3 | 95 | 45.0 | 33.8-56.2 | 69 | 41.3 | 28.9-53.7 |
| Utah | 90 | 19.4 | 8.5-30.3 | 46 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| Vermont | 119 | 45.6 | 36.4-54.9 | 48 | $\ddagger$ |  | 71 | 49.9 | 38.6-61.2 |
| Virginia | 101 | 31.0 | 20.0-41.9 | 47 | $\ddagger$ |  | 54 | 40.0 | 25.5-54.5 |
| Washington | 476 | 38.1 | 31.1-45.2 | 255 | 34.2 | 25.2-43.2 | 221 | 41.2 | 31.1-51.3 |
| West Virginia | 76 | 54.9 | 44.2-65.5 | 36 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Wisconsin | 144 | 37.5 | 28.0-47.0 | 76 | 22.5 | 12.2-32.8 | 68 | 51.2 | 37.0-65.4 |
| Wyoming | 145 | 53.5 | 44.5-62.5 | 85 | 49.1 | 37.4-60.9 | 60 | 57.5 | 44.2-70.8 |
| United States | 11575 | 38.1 | 36.1-40.0 | 6683 | 33.6 | 31.3-35.9 | 4892 | 42.3 | 39.2-45.3 |
| Region ${ }^{\text {® }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 3401 | 38.9 | 35.8-42.1 | 2032 | 35.3 | 34.8-38.8 | 1369 | 42.0 | 36.9-46.9 |
| Northern Plains | 2716 | 41.3 | 37.4-45.2 | 1638 | 36.8 | 32.1-41.0 | 1078 | 46.2 | 40.0-52.3 |
| Southwest | 1249 | 20.7 | 17.4-24.0 | 735 | 18.7 | 14.4-22.9 | 514 | 24.3 | 19.0-29.5 |
| Pacific Coast | 949 | 36.8 | 30.1-43.6 | 534 | 32.1 | 24.0-40.2 | 415 | 42.1 | 31.3-52.8 |
| Alaska | 1573 | 41.1 | 37.4-44.7 | 904 | 37.3 | 32.9-41.8 | 669 | 45.3 | 30.1-35.3 |

[^4]Obesity and a sedentary lifestyle account for about $\$ 90$ billion in direct health care costs each year (http://www.cdc.gov/nccdphp/aag/aag_dnpa.htm). Obesity also increases the nation's prevalence of weight-related risk factors for cardiovascular disease, including high blood pressure, high blood cholesterol, and diabetes (Arch Intern Med 2004;164:249-58).

Preventing or reducing these risk factors by eating a healthy diet and increasing physical activity can lower a person's risk for heart disease and stroke. For example, losing at least 10 lbs and maintaining that loss for 36 months can lower a person's blood pressure significantly (Ann Intern Med 2001;134:1-11).

CDC provides national leadership for obesity control through programs that promote increased fruit and vegetable consumption (e.g., 5 A Day for Better Health) and physical activity (e.g., KidsWalk-to-School) among adults and children. CDC also sponsors 12 state programs to help prevent obesity by improving nutrition and increasing physical activity in these states.

Figure 6. Prevalence of Self-Reported Obesity Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001-2003


The high prevalence of obesity among American Indian and Alaska Native (AI/AN) people is contributing to a high incidence of diabetes in this population. The IHS recently received a significant increase in funding to prevent and control diabetes among AI/AN people. It is implementing community and health care system programs as part of the IHS Director's Prevention Initiative.

## Definition of Obesity

We defined self-reported obesity on the basis of questions from the Behavioral Risk Factor Surveillance System (BRFSS) that asked respondents their height and weight during 2001-2003. We used this information to calculate respondents' body mass index (BMI). People with a BMI $\geq 30.0$ were considered obese. Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found dramatic state-to-state differences in the prevalence of obesity among AI/AN people (see facing map and Table 6). A twofold difference existed between the midpoint of the lowest quartile ( $17 \%$ ) and that of the highest quartile (36\%).

The national prevalence for all $\mathrm{AI} / \mathrm{AN}$ people was $28 \%$. Prevalences were similar for women ( $28 \%$ ) and men ( $27 \%$ ). AI/AN people ranked second among U.S. racial/ethnic groups, with only blacks having a higher prevalence (see Figure 6).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of obesity and are more representative of AI/AN people living in urban rather than rural areas or on reservations (see Appendix B for details).

## Prevalence of Self-Reported Obesity 2001-2003



## American Indians and Alaska Natives Ages 18 Years and Older



Table 6. Prevalence of Self-Reported Obesity Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ |
| Alabama | 116 | 29.4 | 20.6-38.2 | 57 | 35.8 | 20.6-51.1 | 59 | 27.6 | 17.5-37.7 |
| Alaska | 1521 | 29.1 | 25.5-32.6 | 856 | 32.3 | 27.3-37.4 | 665 | 25.4 | 20.6-30.1 |
| Arizona | 383 | 35.2 | 28.5-42.0 | 246 | 32.8 | 24.1-41.5 | 137 | 35.5 | 26.4-44.5 |
| Arkansas | 164 | 20.1 | 13.8-26.4 | 91 | 22.0 | 13.5-30.5 | 73 | 18.2 | 8.8-27.4 |
| California | 119 | 28.0 | 19.3-36.7 | 75 | 28.8 | 18.3-39.2 | 44 | $\ddagger$ | 13.7-40.4 |
| Colorado | 76 | 28.9 | 16.9-40.8 | 49 | $\ddagger$ | 16.6-40.2 | 27 | $\ddagger$ |  |
| Connecticut | 98 | 21.2 | 12.0-30.4 | 48 | $\pm$ |  | 50 | 27.9 | 14.4-41.3 |
| Delaware | 80 | 16.8 | 8.5-25.2 | 40 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| District of Columbia | 31 | $\ddagger$ |  | 13 | $\ddagger$ |  | 18 | $\pm$ |  |
| Florida | 153 | 17.0 | 9.4-24.5 | 78 | 11.9 | 4.5-19.4 | 75 | 21.1 | 9.7-32.4 |
| Georgia | 135 | 25.1 | 16.9-33.3 | 70 | 28.7 | 15.9-41.4 | 65 | 23.2 | 12.7-33.6 |
| Hawaii | 80 | 34.2 | 18.7-49.8 | 44 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Idaho | 177 | 29.5 | 22.0-37.1 | 104 | 39.1 | 28.1-50.1 | 73 | 18.9 | $9.7-28.1$ |
| Illinois | 110 | 19.2 | 10.8-27.7 | 65 | 20.6 | 10.9-30.2 | 45 | $\ddagger$ |  |
| Indiana | 112 | 28.5 | 19.5-37.5 | 56 | 33.0 | 19.6-46.4 | 56 | 24.9 | 12.5-37.2 |
| lowa | 38 | $\pm$ |  | 24 | $\ddagger$ |  | 14 | $\pm$ |  |
| Kansas | 130 | 26.2 | 18.2-34.2 | 74 | 21.4 | 11.6-31.1 | 56 | 33.2 | 21.0-45.4 |
| Kentucky | 93 | 20.1 | 10.8-29.3 | 31 | $\pm$ |  | 62 | 28.5 | 13.2-43.8 |
| Louisiana | 140 | 23.4 | 15.8-31.1 | 89 | 18.7 | $9.7-27.6$ | 51 | 33.0 | 19.2-46.8 |
| Maine | 80 | 19.1 | 10.9-27.3 | 41 | $\ddagger$ |  | 39 | $\ddagger$ |  |
| Maryland | 99 | 12.6 | 5.8-19.4 | 49 | $\ddagger$ |  | 50 | 17.7 | 6.7-28.8 |
| Massachusetts | 134 | 21.5 | 12.5-30.4 | 76 | 28.6 | 17.6-39.6 | 58 | 16.2 | 5.2-27.2 |
| Michigan | 98 | 35.6 | 23.8-47.3 | 51 | 32.8 | 20.3-45.4 | 47 | $\ddagger$ |  |
| Minnesota | 83 | 38.1 | 26.9-49.2 | 47 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Mississippi | 59 | 39.3 | 25.1-53.6 | 38 | $\pm$ |  | 21 | $\ddagger$ |  |
| Missouri | 153 | 24.8 | 16.7-32.9 | 72 | 24.3 | 13.4-35.2 | 81 | 24.5 | 14.1-34.9 |
| Montana | 1061 | 38.0 | 33.7-42.3 | 634 | 35.3 | 29.3-41.2 | 427 | 41.5 | 35.4-47.6 |
| Nebraska | 70 | 35.0 | 22.2-47.8 | 42 | $\ddagger$ |  | 28 | $\ddagger$ |  |
| Nevada | 128 | 24.1 | 12.5-35.6 | 65 | 26.7 | 13.3-40.1 | 63 | 15.1 | 6.8-23.3 |
| New Hampshire | 120 | 20.6 | 13.3-27.9 | 53 | 14.5 | 5.3-23.6 | 67 | 24.4 | 14.2-34.5 |
| New Jersey | 123 | 15.9 | 7.5-24.4 | 68 | 13.6 | 4.4-22.9 | 55 | 21.5 | 7.5-35.5 |
| New Mexico | 537 | 31.7 | 26.6-36.8 | 303 | 34.2 | 27.3-41.1 | 234 | 29.3 | 22.3-36.3 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 101 | 39.1 | 26.9-51.2 | 62 | 38.8 | 26.1-51.5 | 39 | $\ddagger$ |  |
| North Carolina | 465 | 29.1 | 22.7-35.6 | 293 | 31.3 | 22.7-39.9 | 172 | 27.2 | 17.9-36.5 |
| North Dakota | 244 | 36.0 | 28.1-43.9 | 151 | 34.0 | 24.3-43.8 | 93 | 37.1 | 25.1-49.2 |
| Ohio | 94 | 18.2 | 10.3-26.1 | 43 | $\pm$ |  | 51 | 18.7 | 7.9-29.5 |
| Oklahoma | 1319 | 29.7 | 26.9-32.6 | 811 | 29.9 | 26.2-33.5 | 508 | 29.6 | 25.1-34.0 |
| Oregon | 155 | 29.3 | 21.2-37.5 | 80 | 22.5 | 13.2-31.8 | 75 | 34.5 | 22.3-46.6 |
| Pennsylvania | 96 | 26.7 | 15.9-37.5 | 46 | $\ddagger$ |  | 50 | 21.1 | 10.9-31.4 |
| Rhode Island | 94 | 28.0 | 17.2-38.8 | 50 | 31.3 | 17.5-45.1 | 44 | $\ddagger$ |  |
| South Carolina | 117 | 20.9 | 13.2-28.5 | 58 | 17.1 | 8.8-25.5 | 59 | 20.9 | 10.7-31.1 |
| South Dakota | 656 | 36.4 | 31.8-40.9 | 411 | 33.4 | 28.2-38.7 | 245 | 39.3 | 32.1-46.6 |
| Tennessee | 52 | 18.8 | 9.7-27.8 | 24 | $\ddagger$ |  | 28 | $\ddagger$ |  |
| Texas | 160 | 25.9 | 18.3-33.5 | 92 | 26.6 | 16.1-37.1 | 68 | 27.5 | 14.8-40.2 |
| Utah | 90 | 25.4 | 15.2-35.5 | 46 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| Vermont | 110 | 23.3 | 14.4-32.3 | 41 | $\ddagger$ |  | 69 | 20.6 | 11.0-30.3 |
| Virginia | 99 | 28.0 | 17.4-38.5 | 45 | $\pm$ |  | 54 | 27.9 | 15.1-40.7 |
| Washington | 455 | 30.1 | 23.4-36.7 | 238 | 32.6 | 24.1-41.0 | 217 | 28.6 | 19.3-37.9 |
| West Virginia | 75 | 27.8 | 17.3-38.4 | 35 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Wisconsin | 141 | 32.3 | 24.5-39.9 | 73 | 35.0 | 24.2-45.7 | 68 | 27.6 | 17.3-37.9 |
| Wyoming | 143 | 24.0 | 16.2-31.8 | 84 | 24.7 | 14.7-34.6 | 59 | 20.7 | 9.8-31.5 |
| United States | 11167 | 27.8 | 25.9-29.7 | 6332 | 28.3 | 25.7-30.9 | 4835 | 27.1 | 24.5-29.7 |
| Region ${ }^{\text {§ }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 3262 | 26.7 | 23.9-29.6 | 1913 | 27.7 | 24.0-31.4 | 1349 | 25.9 | 21.8-30.0 |
| Northern Plains | 2646 | 35.1 | 30.7-39.5 | 1573 | 35.9 | 30.6-41.1 | 1073 | 33.1 | 27.1-39.2 |
| Southwest | 1214 | 31.7 | 27.5-35.8 | 709 | 30.9 | 25.3-36.5 | 505 | 30.8 | 25.8-35.9 |
| Pacific Coast | 906 | 29.0 | 22.7-35.4 | 497 | 30.0 | 21.8-38.1 | 409 | 27.9 | 18.7-37.0 |
| Alaska | 1521 | 29.1 | 25.5-32.6 | 856 | 32.3 | 27.3-37.4 | 665 | 25.4 | 20.6-30.1 |

* Data are based on self-reported height and weight from the BRFSS, which was used to calculate body mass index (BMI). BMI $>30.0$ was considered obese. Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
${ }^{\dagger}$ Confidence interval.
$\ddagger$ Estimates for states with < 50 respondents are considered unstable and are not reported.
§ The Indian Health Service (IHS) provides services to American Indians and Alaska Natives in 35 states. Only these 35 states were used for the regional estimates. Regions are defined as follows: East = Alabama, Connecticut, Florida Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, Iowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

Physical inactivity and unhealthy diets are leading causes of preventable death in the United States (JAMA 2004;291: 1238-42). In addition to reducing a person's risk for death, increased physical activity can reduce the risk for chronic diseases and conditions such as cardiovascular disease, diabetes, obesity, and musculoskeletal conditions. (Proceedings of the Health; 1994).

CDC recommends at least 30 minutes of moderate-intensity physical activity (e.g., walking briskly, mowing the lawn, dancing, swimming, bicycling) at least 5 days a week (Physical Activity and Health: A Report of the Surgeon General; 1996).

Healthy People 2010 calls for reducing the proportion of the total U.S. population with no leisure-time physical activity to $20 \%$. It also seeks to increase the proportion of people who regularly participate in moderate physical activity to $30 \%$.

Figure 7.
Prevalence of
Self-Reported
Physical Inactivity
Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001-2003

The IHS is implementing community-based programs that promote healthier diets and increased physical activity among American Indian and Alaska Native (AI/AN) people in the context of their traditional values and cultures.

## Definition of Physical Inactivity

We defined self-reported physical inactivity on the basis of "no" responses to the following Behavioral Risk Factor Surveillance System (BRFSS) question during 2001-2003: "During the past month, other than your regular job, did you participate in any physical activities or exercise such as running, calisthenics, golf, gardening, or walking for exercise?" Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found dramatic state-to-state differences in the prevalence of physical inactivity among AI/AN people (see facing map and Table 7). A 1.7-fold difference existed between the midpoint of the lowest quartile ( $23 \%$ ) and that of the highest quartile ( $40 \%$ ).

The national prevalence for all AI/AN people was $30 \%$. The prevalence was higher for women ( $32 \%$ ) than for men ( $28 \%$ ). The prevalence for $\mathrm{AI} / \mathrm{AN}$ people was lower than those for blacks and Hispanics and somewhat higher than those for other U.S. racial/ethnic groups (see Figure 7).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of physical inactivity and are more representative of $\mathrm{AI} / \mathrm{AN}$ people living in urban rather than rural areas or on reservations (see Appendix B for more details).

Prevalence of Self-Reported Physical Inactivity 2001-2003


## American Indians and Alaska Natives Ages 18 Years and Older



Table 7. Prevalence of Self-Reported Physical Inactivity Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{+}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| Alabama | 118 | 35.2 | 24.0-46.4 | 59 | 34.7 | 22.0-47.4 | 59 | 37.6 | 22.4-52.9 |
| Alaska | 1582 | 32.5 | 28.6-36.3 | 910 | 38.4 | 32.9-43.9 | 672 | 25.8 | 21.3-30.4 |
| Arizona | 394 | 27.9 | 21.1-34.7 | 254 | 30.4 | 21.7-39.2 | 140 | 24.4 | 14.7-34.1 |
| Arkansas | 169 | 32.9 | 25.0-40.8 | 95 | 33.9 | 23.2-44.6 | 74 | 29.7 | 18.8-40.6 |
| California | 113 | 21.6 | 13.4-29.7 | 71 | 20.8 | 11.7-29.9 | 42 | $\ddagger$ |  |
| Colorado | 80 | 21.1 | 9.9-32.4 | 53 | 22.4 | 9.6-35.1 | 27 | $\ddagger$ |  |
| Connecticut | 102 | 46.6 | 35.3-57.8 | 51 | 46.7 | 33.5-59.9 | 51 | 41.7 | 27.4-56.0 |
| Delaware | 86 | 35.4 | 22.2-48.7 | 46 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| District of Columbia | 32 | $\ddagger$ |  | 14 | $\ddagger$ |  | 18 | $\ddagger$ |  |
| Florida | 155 | 29.3 | 19.6-39.0 | 80 | 34.3 | 20.2-48.3 | 75 | 26.2 | 13.8-38.5 |
| Georgia | 139 | 29.4 | 19.6-39.2 | 73 | 30.6 | 18.5-42.6 | 66 | 28.0 | 15.6-40.5 |
| Hawaii | 82 | 25.0 | 13.8-36.2 | 45 | $\ddagger$ |  | 37 | $\ddagger$ |  |
| Idaho | 188 | 23.1 | 16.2-29.9 | 114 | 19.9 | 11.4-28.4 | 74 | 26.0 | 15.9-36.1 |
| Illinois | 117 | 33.0 | 23.8-42.3 | 68 | 33.5 | 21.5-45.4 | 49 | $\ddagger$ |  |
| Indiana | 119 | 32.5 | 23.2-41.7 | 63 | 30.7 | 19.2-42.2 | 56 | 34.0 | 20.8-47.3 |
| lowa | 39 | + |  | 25 |  |  | 14 | $\ddagger$ |  |
| Kansas | 137 | 28.6 | 20.2-36.9 | 80 | 22.2 | 12.2-32.3 | 57 | 32.2 | 20.3-44.1 |
| Kentucky | 99 | 28.1 | 18.2-37.9 | 36 | $\ddagger$ |  | 63 | 33.2 | 22.2-44.1 |
| Louisiana | 150 | 32.8 | 24.8-40.9 | 97 | 34.4 | 24.8-44.1 | 53 | 37.6 | 25.3-49.9 |
| Maine | 90 | 27.0 | 17.3-36.6 | 50 | 24.7 | 14.4-34.9 | 40 | $\ddagger$ |  |
| Maryland | 102 | 24.9 | 14.0-35.8 | 52 | 40.0 | 24.7-55.3 | 50 | 16.5 | 5.5-27.5 |
| Massachusetts | 148 | 31.2 | 21.0-41.4 | 89 | 39.7 | 27.1-52.4 | 59 | 23.0 | 9.8-36.2 |
| Michigan | 102 | 24.6 | 15.9-33.3 | 55 | 18.7 | 8.3-29.1 | 47 | $\ddagger$ |  |
| Minnesota | 85 | 23.7 | 14.1-33.3 | 49 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Mississippi | 63 | 38.0 | 24.4-51.5 | 42 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| Missouri | 159 | 31.0 | 23.4-38.6 | 77 | 26.2 | 15.3-37.0 | 82 | 36.8 | 26.6-47.0 |
| Montana | 1088 | 31.5 | 27.2-35.7 | 658 | 31.3 | 25.6-37.0 | 430 | 32.2 | 26.2-38.1 |
| Nebraska | 74 | 28.9 | 18.1-39.8 | 45 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Nevada | 132 | 24.5 | 13.2-35.9 | 68 | 32.5 | 16.5-48.5 | 64 | 13.7 | 6.3-21.1 |
| New Hampshire | 126 | 21.9 | 14.6-29.2 | 58 | 26.3 | 14.1-38.4 | 68 | 18.5 | 9.9-27.1 |
| New Jersey | 129 | 40.6 | 27.2-54.0 | 73 | 39.9 | 25.4-54.3 | 56 | 38.7 | 23.7-53.7 |
| New Mexico | 552 | 23.7 | 19.3-28.1 | 314 | 26.5 | 20.7-32.4 | 238 | 20.2 | 14.3-26.1 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

|  | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| New York | 106 | 34.5 | 23.5-45.5 | 65 | 42.6 | 29.4-55.7 | 41 | $\ddagger$ |  |
| North Carolina | 483 | 38.1 | 30.9-45.3 | 307 | 37.2 | 28.8-45.6 | 176 | 39.0 | 27.6-50.4 |
| North Dakota | 251 | 30.2 | 23.0-37.4 | 156 | 27.1 | 19.0-35.3 | 95 | 35.4 | 23.9-46.9 |
| Ohio | 97 | 27.5 | 17.5-37.5 | 46 | $\ddagger$ |  | 51 | 32.4 | 18.6-46.2 |
| Oklahoma | 1374 | 34.4 | 31.5-37.3 | 859 | 38.5 | 34.7-42.2 | 515 | 29.7 | 25.3-34.1 |
| Oregon | 164 | 28.5 | 21.2-35.8 | 89 | 24.9 | 15.2-34.6 | 75 | 32.8 | 21.8-43.9 |
| Pennsylvania | 96 | 28.4 | 16.8-40.0 | 48 | $\ddagger$ |  | 48 | $\ddagger$ |  |
| Rhode Island | 99 | 21.6 | 13.2-30.1 | 53 | 35.1 | 23.1-47.1 | 46 | $\ddagger$ |  |
| South Carolina | 123 | 31.3 | 21.8-40.8 | 64 | 21.0 | 11.2-30.9 | 59 | 38.2 | 24.2-52.3 |
| South Dakota | 671 | 31.6 | 27.1-36.1 | 426 | 30.3 | 24.9-35.7 | 245 | 33.6 | 26.6-40.6 |
| Tennessee | 56 | 38.1 | 25.2-51.0 | 27 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Texas | 164 | 28.8 | 21.2-36.3 | 95 | 35.4 | 25.0-45.9 | 69 | 20.7 | 10.2-31.2 |
| Utah | 90 | 36.9 | 26.0-47.8 | 46 | $\ddagger$ |  | 44 | $\ddagger$ |  |
| Vermont | 119 | 23.9 | 15.7-32.1 | 48 | $\ddagger$ |  | 71 | 24.1 | 13.7-34.5 |
| Virginia | 101 | 32.4 | 22.4-42.4 | 47 | $\ddagger$ |  | 54 | 23.9 | 11.1-36.8 |
| Washington | 475 | 26.8 | 20.3-33.3 | 255 | 30.3 | 21.4-39.2 | 220 | 24.6 | 15.9-33.4 |
| West Virginia | 76 | 30.3 | 19.7-40.9 | 36 | $\ddagger$ |  | 40 | $\ddagger$ |  |
| Wisconsin | 144 | 36.9 | 28.6-45.1 | 76 | 37.5 | 26.4-48.5 | 68 | 37.2 | 24.8-49.5 |
| Wyoming | 145 | 26.0 | 18.5-33.5 | 85 | 28.0 | 18.1-37.9 | 60 | 24.9 | 13.5-36.3 |
| United States | 11585 | 29.7 | 27.9-31.6 | 6692 | 31.6 | 29.1-34.0 | 4893 | 28.1 | 25.4-30.7 |
| Region ${ }^{\text {§ }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 3408 | 32.5 | 29.6-35.4 | 2039 | 36.2 | 32.4-40.0 | 1369 | 29.1 | 24.8-33.4 |
| Northern Plains | 2718 | 29.9 | 26.4-33.4 | 1638 | 29.9 | 25.2-34.5 | 1080 | 30.4 | 25.3-35.5 |
| Southwest | 1248 | 26.3 | 22.5-30.2 | 735 | 28.4 | 23.1-33.8 | 513 | 22.9 | 17.9-27.8 |
| Pacific Coast | 940 | 23.1 | 17.2-29.0 | 529 | 22.0 | 15.0-28.9 | 411 | 24.3 | 14.9-33.7 |
| Alaska | 1582 | 32.5 | 28.6-36.3 | 910 | 38.4 | 32.9-43.9 | 672 | 25.8 | 21.3-30.4 |

[^5]
## Poor Health

Self-perception of health is often used as a representative measurement of a range of factors that can affect a person's general health and functional status. For example, studies show that a person's perception of his general health can predict his risk for death and disability. Even after adjusting for socioeconomic (e.g., education) and health risk (e.g., number of physician visits) variables, people who report poor or fair health have an approximately twofold greater risk of death (Am J Epidemiol 1999;149:41-66).

People who report poor health also are more likely to think that they are at greater risk of having a heart attack (Behav Med 2000;26:4-13). In addition, self-perception of poor health has been linked to risk factors associated with heart disease and stroke, such as diabetes, smoking, high blood pressure, and physical inactivity (MMWR 1996;46:906-11).

To support the Healthy People 2010 goal of increasing Americans' quality and years of healthy life, CDC developed

Figure 8.
Prevalence of Self-Reported Poor Health Among Adults $\geq 18$ Years by Race/Ethnicity, BRFSS, 2001-2003

the Healthy Days surveillance measure to monitor leading health indicators such as physical activity, obesity, and tobacco use (Measuring Healthy Days; 2000). The resulting data can guide policy changes designed to improve the health of the nation and decrease the number of people reporting poor general health.

## Definition of Poor Health

We defined self-reported poor health on the basis of "poor" responses to the following Behavioral Risk Factor Surveillance System (BRFSS) question during 2001-2003: "Would you say that in general your health is excellent, very good, good, fair, or poor?" Age-adjusted prevalences were calculated for adults ages $\geq 18$ years.

## Prevalence Variations

We found substantial state-to-state differences in the prevalence of poor health among American Indian and Alaska Native (AI/AN) people (see facing map and Table 8). A twofold difference existed between the midpoint of the lowest quartile ( $18 \%$ ) and that of the highest quartile ( $36 \%$ ).

The national prevalence for all AI/AN people was $26 \%$. The prevalence was higher for women ( $28 \%$ ) than for men ( $24 \%$ ). AI/AN people ranked second among U.S. racial/ethnic groups, with only Hispanics having a higher prevalence (see Figure 8).

## A Cautionary Note

Prevalences are based on a sample of AI/AN people surveyed by telephone for the BRFSS. They are likely lower than the true prevalence of poor health and are more representative of $\mathrm{AI} / \mathrm{AN}$ people living in urban rather than rural areas or on reservations (see Appendix B for more details).

Prevalence of Self-Reported Poor Health 2001-2003


## American Indians and Alaska Natives Ages 18 Years and Older



Table 8. Prevalence of Self-Reported Poor Health Among American Indians and Alaska Natives, by State,

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{+}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {t }}$ |
| Alabama | 118 | 35.6 | 26.5-44.6 | 59 | 40.5 | 31.3-49.7 | 59 | 34.0 | 21.6-46.4 |
| Alaska | 1581 | 22.3 | 18.7-25.9 | 910 | 24.0 | 18.6-29.3 | 671 | 20.8 | 16.1-25.4 |
| Arizona | 393 | 25.7 | 18.6-32.8 | 255 | 23.6 | 15.4-31.7 | 138 | 31.2 | 21.1-41.2 |
| Arkansas | 166 | 32.7 | 24.9-40.5 | 93 | 29.7 | 20.2-39.2 | 73 | 36.3 | 24.3-48.2 |
| California | 120 | 32.1 | 22.6-41.7 | 75 | 34.9 | 23.4-46.3 | 45 | $\ddagger$ |  |
| Colorado | 80 | 33.1 | 25.1-41.1 | 53 | 34.6 | 24.7-44.5 | 27 | $\pm$ |  |
| Connecticut | 101 | 16.6 | 8.4-24.9 | 50 | 19.6 | 7.7-31.5 | 51 | 13.7 | 4.3-23.0 |
| Delaware | 86 | 28.4 | 17.2-39.5 | 46 | $\ddagger$ | 13.4-42.0 | 40 | $\ddagger$ |  |
| District of Columbia | 32 | $\ddagger$ | 3.2-23.4 | 14 | $\ddagger$ |  | 18 | $\ddagger$ |  |
| Florida | 155 | 28.0 | 18.9-37.0 | 80 | 34.9 | 22.0-47.7 | 75 | 22.1 | 10.7-33.5 |
| Georgia | 138 | 20.3 | 12.6-28.0 | 72 | 24.7 | 13.1-36.4 | 66 | 17.3 | 7.8-26.7 |
| Hawaii | 82 | 18.9 | 6.7-31.1 | 45 | $\ddagger$ |  | 37 | $\ddagger$ |  |
| Idaho | 188 | 25.0 | 18.1-31.8 | 115 | 28.8 | 19.8-37.9 | 73 | 20.0 | 10.7-29.3 |
| Illinois | 116 | 25.2 | 17.2-33.2 | 67 | 29.2 | 78.5-39.8 | 49 | $\ddagger$ |  |
| Indiana | 119 | 34.1 | 24.4-43.8 | 63 | 37.3 | 24.6-49.9 | 56 | 29.9 | 15.7-44.1 |
| lowa | 39 | $\ddagger$ |  | 25 | キ |  | 14 | $\ddagger$ |  |
| Kansas | 137 | 19.0 | 11.9-26. 1 | 80 | 22.5 | 12.2-32.9 | 57 | 15.1 | 6.5-23.7 |
| Kentucky | 99 | 37.6 | 25.6-49.7 | 36 | $\ddagger$ |  | 63 | 34.2 | 23.0-45.4 |
| Louisiana | 149 | 29.1 | 21.5-36.7 | 96 | 31.4 | 21.1-41.6 | 53 | 22.4 | 11.4-33.5 |
| Maine | 89 | 26.6 | 16.9-36.3 | 50 | 29.8 | 16.8-42.8 | 39 | $\ddagger$ |  |
| Maryland | 101 | 20.9 | 10.2-31.5 | 52 | 16.2 | 6.4-26.0 | 49 | $\ddagger$ |  |
| Massachusetts | 148 | 32.1 | 21.8-42.4 | 89 | 33.9 | 22.8-44.9 | 59 | 28.3 | 13.5-43.0 |
| Michigan | 102 | 20.0 | 11.4-28.5 | 55 | 24.5 | 11.9-37.2 | 47 | $\ddagger$ |  |
| Minnesota | 85 | 29.8 | 20.1-39.5 | 49 | $\ddagger$ |  | 36 | $\ddagger$ |  |
| Mississippi | 61 | 38.7 | 25.3-52.1 | 40 | $\ddagger$ |  | 21 | $\ddagger$ |  |
| Missouri | 159 | 29.1 | 20.3-37.8 | 77 | 28.4 | 17.8-38.9 | 82 | 28.6 | 17.3-40.0 |
| Montana | 1089 | 28.3 | 24.3-32.2 | 659 | 30.4 | 25.1-35.7 | 430 | 25.8 | 20.4-31.2 |
| Nebraska | 74 | 19.7 | 9.3-30.0 | 45 | $\ddagger$ |  | 29 | $\ddagger$ |  |
| Nevada | 132 | 36.6 | 25.9-47.2 | 68 | 39.9 | 26.4-53.5 | 64 | 25.8 | 12.5-39.1 |
| New Hampshire | 126 | 23.4 | 15.7-31.1 | 58 | 33.4 | 21.7-45.2 | 68 | 17.2 | 7.3-27.1 |
| New Jersey | 129 | 14.6 | 5.7-23.6 | 73 | 11.1 | 3.0-19.1 | 56 | 17.1 | 3.9-30.4 |
| New Mexico | 551 | 16.6 | 12.9-20.4 | 314 | 21.7 | 16.4-27.0 | 237 | 11.9 | 7.0-16.8 |

Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Total Population |  |  | Women |  |  | Men |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ | Respondents | \% | 95\% C.I. ${ }^{\text {+ }}$ |
| New York | 107 | 31.6 | 21.2-42.0 | 66 | 26.9 | 15.7-38.1 | 41 | $\ddagger$ |  |
| North Carolina | 481 | 28.1 | 21.9-34.4 | 305 | 28.8 | 21.5-36.0 | 176 | 27.4 | 17.7-37.1 |
| North Dakota | 250 | 29.9 | 22.7-37.1 | 156 | 31.8 | 23.0-40.6 | 94 | 28.2 | 16.4-39.9 |
| Ohio | 98 | 26.3 | 16.3-36.3 | 46 | $\ddagger$ |  | 52 | 21.7 | 10.3-33.1 |
| Oklahoma | 1370 | 24.1 | 21.6-26.6 | 858 | 26.3 | 23.1-29.6 | 512 | 21.7 | 17.7-25.6 |
| Oregon | 163 | 26.4 | 19.5-33.3 | 89 | 23.4 | 14.6-32.3 | 74 | 27.8 | 17.6-38.0 |
| Pennsylvania | 98 | 27.5 | 17.0-38.1 | 48 | $\ddagger$ |  | 50 | 28.4 | 14.9-41.8 |
| Rhode Island | 99 | 15.9 | 8.7-23.1 | 53 | 18.8 | 8.2-29.4 | 46 | $\pm$ |  |
| South Carolina | 121 | 25.1 | 16.3-34.0 | 63 | 19.9 | 9.4-30.4 | 58 | 27.0 | 15.1-39.0 |
| South Dakota | 667 | 22.7 | 18.7-26.6 | 423 | 24.1 | 19.4-28.7 | 244 | 21.1 | 14.9-27.2 |
| Tennessee | 56 | 25.1 | 15.9-34.3 | 27 | $\ddagger$ |  | 29 | $\pm$ |  |
| Texas | 164 | 26.4 | 19.0-33.7 | 95 | 29.0 | 18.9-39.1 | 69 | 21.4 | 11.1-31.6 |
| Utah | 89 | 28.5 | 16.3-40.6 | 45 | $\pm$ |  | 44 | $\pm$ |  |
| Vermont | 119 | 31.6 | 22.1-41.2 | 48 | $\pm$ |  | 71 | 37.5 | 25.0-50.0 |
| Virginia | 101 | 21.1 | 12.8-29.4 | 47 | $\ddagger$ |  | 54 | 23.9 | 13.7-34.1 |
| Washington | 477 | 22.6 | 16.8-28.4 | 256 | 27.2 | 19.1-35.2 | 221 | 19.8 | 12.0-27.6 |
| West Virginia | 76 | 42.7 | 31.1-54.2 | 36 | キ |  | 40 | $\ddagger$ |  |
| Wisconsin | 144 | 22.6 | 14.4-30.9 | 76 | 21.7 | 10.8-32.7 | 68 | 23.3 | 11.0-35.6 |
| Wyoming | 144 | 19.8 | 12.6-26.9 | 85 | 26.4 | 16.7-36.1 | 59 | 8.7 | 1.9-15.5 |
| United States | 11569 | 26.2 | 24.4-28.1 | 6685 | 28.0 | 25.5-30.5 | 4884 | 24.3 | 21.7-27.0 |
| Region ${ }^{\text {s }}$ | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. | Respondents | \% | 95\% C.I. |
| East | 3398 | 26.6 | 23.9-29.3 | 2032 | 28.5 | 25.0-32.1 | 1366 | 24.4 | 20.6-28.3 |
| Northern Plains | 2713 | 24.8 | 21.3-28.2 | 1636 | 26 | 21.5-30.6 | 1077 | 23.8 | 18.9-28.7 |
| Southwest | 1245 | 25.6 | 21.6-29.5 | 735 | 26.6 | 21.5-31.8 | 510 | 23.7 | 18.3-29.2 |
| Pacific Coast | 948 | 29.2 | 22.4-36.0 | 535 | 32.2 | 23.7-40.7 | 413 | 25.3 | 15.4-35.2 |
| Alaska | 1581 | 22.3 | 18.7-25.9 | 910 | 24 | 18.6-29.3 | 671 | 20.8 | 16.1-25.4 |

[^6]Risk Factors for Heart Disease and Stroke Among the Total U.S. Population, by State

Table A-1. Prevalence of Self-Reported High Blood Pressure Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

| State | Respondents | $\%$ | $95 \%$ C.I. |
| :--- | :---: | :---: | :---: |
| Alabama | 6072 | 31.8 | $30.5-33.0$ |
| Alaska | 5470 | 23.7 | $22.1-25.3$ |
| Arizona | 6400 | 22.8 | $21.4-24.2$ |
| Arkansas | 7075 | 28.8 | $27.7-29.9$ |
| California | 8712 | 24.1 | $23.1-25.1$ |
| Colorado | 6048 | 21.6 | $20.5-22.7$ |
| Connecticut | 12799 | 22.9 | $22.2-23.7$ |
| Delaware | 7487 | 27.1 | $25.9-28.3$ |
| District of Columbia | 3834 | 28.1 | $26.5-29.7$ |
| Florida | 9562 | 25.2 | $24.1-26.3$ |
| Georgia | 12052 | 28.7 | $27.7-29.7$ |
| Hawaii | 8751 | 23.0 | $22.0-24.0$ |
| Idaho | 9740 | 23.9 | $23.0-24.8$ |
| Illinois | 7411 | 24.7 | $23.7-25.7$ |
| Indiana | 9394 | 26.0 | $25.1-26.9$ |
| lowa | 8564 | 23.8 | $22.9-24.8$ |
| Kansas | 9109 | 23.1 | $22.2-23.9$ |
| Kentucky | 15073 | 29.5 | $28.5-30.5$ |
| Louisiana | 9978 | 28.7 | $27.8-29.7$ |
| Maine | 4750 | 24.3 | $23.1-25.5$ |
| Maryland | 8739 | 25.8 | $24.7-26.8$ |
| Massachusetts | 15883 | 22.8 | $22.0-23.5$ |
| Michigan | 7310 | 26.8 | $25.7-27.9$ |
| Minnesota | 7829 | 22.0 | $21.2-22.9$ |
| Mississippi | 7393 | 32.8 | $31.6-33.9$ |
| Missouri | 8357 | 26.1 | $25.0-27.3$ |
| a |  |  |  |


| State | Respondents | $\%$ | 95\% C.I. ${ }^{\dagger}$ |
| :--- | ---: | :---: | :---: |
| Montana | 7321 | 22.9 | $21.7-24.0$ |
| Nebraska | 8601 | 22.2 | $21.4-23.1$ |
| Nevada | 5519 | 24.4 | $22.9-26.0$ |
| New Hampshire | 8959 | 22.6 | $21.7-23.5$ |
| New Jersey | 17000 | 24.9 | $24.1-25.6$ |
| New Mexico | 9067 | 20.6 | $19.7-21.5$ |
| New York | 9277 | 25.1 | $24.2-26.1$ |
| North Carolina | 15513 | 27.7 | $26.7-28.7$ |
| North Dakota | 5468 | 23.2 | $22.1-24.3$ |
| Ohio | 7149 | 25.6 | $24.5-26.8$ |
| Oklahoma | 12091 | 27.5 | $26.6-28.4$ |
| Oregon | 6493 | 23.6 | $22.6-24.7$ |
| Pennsylvania | 7264 | 25.6 | $24.5-26.6$ |
| Rhode Island | 8035 | 26.2 | $25.2-27.2$ |
| South Carolina | 8996 | 28.7 | $27.7-29.7$ |
| South Dakota | 10285 | 23.4 | $22.6-24.2$ |
| Tennessee | 5481 | 29.4 | $28.1-30.7$ |
| Texas | 11851 | 26.2 | $25.4-27.0$ |
| Utah | 7654 | 22.9 | $21.8-24.1$ |
| Vermont | 8465 | 21.8 | $21.0-22.7$ |
| Virginia | 8274 | 25.4 | $24.3-26.4$ |
| Washington | 22709 | 24.1 | $23.4-24.9$ |
| West Virginia | 6403 | 30.9 | $29.8-32.1$ |
| Wisconsin | 7348 | 23.5 | $22.5-24.5$ |
| Wyoming | 6983 | 22.9 | $21.9-23.9$ |
| United States | 455998 | 25.5 | $25.3-25.7$ |
|  |  |  |  |

[^7]Table A-2. Prevalence of Self-Reported High Cholesterol Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Alabama | 4766 | 31.1 | $29.5-32.6$ |
| Alaska | 3953 | 26.7 | $24.8-28.6$ |
| Arizona | 4957 | 28.9 | $27.3-30.6$ |
| Arkansas | 5390 | 28.1 | $26.8-29.4$ |
| California | 6801 | 29.7 | $28.5-31.0$ |
| Colorado | 4743 | 28.2 | $26.8-29.7$ |
| Connecticut | 10727 | 27.3 | $26.4-28.3$ |
| Delaware | 6236 | 29.9 | $28.5-31.3$ |
| District of Columbia | 3241 | 28.3 | $26.5-30.1$ |
| Florida | 7816 | 28.7 | $27.4-30.0$ |
| Georgia | 9652 | 31.1 | $29.9-32.3$ |
| Hawaii | 6778 | 23.6 | $22.3-24.9$ |
| Idaho | 7146 | 27.1 | $25.9-28.2$ |
| Illinois | 5718 | 29.4 | $28.1-30.8$ |
| Indiana | 7292 | 29.0 | $27.9-30.1$ |
| lowa | 6769 | 26.8 | $25.7-28.0$ |
| Kansas | 6947 | 26.3 | $25.2-27.4$ |
| Kentucky | 11549 | 30.5 | $29.3-31.8$ |
| Louisiana | 7507 | 27.0 | $25.9-28.1$ |
| Maine | 3962 | 28.5 | $26.9-30.0$ |
| Maryland | 7348 | 30.5 | $29.1-31.8$ |
| Massachusetts | 13335 | 28.7 | $27.8-29.6$ |
| Michigan | 5989 | 32.4 | $31.1-33.8$ |
| Minnesota | 6399 | 27.6 | $26.5-28.8$ |
| Mississippi | 5531 | 29.3 | $28.0-35.1$ |
| Missouri | 6404 | 28.7 | $27.3-30.2$ |
|  |  |  |  |


| State | Respondents | $\%$ | $95 \%$ C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Montana | 5543 | 25.2 | $23.7-26.6$ |
| Nebraska | 6411 | 25.8 | $24.5-27.0$ |
| Nevada | 4140 | 33.0 | $31.0-35.1$ |
| New Hampshire | 7526 | 29.7 | $28.6-30.9$ |
| New Jersey | 14235 | 29.2 | $28.3-30.2$ |
| New Mexico | 6799 | 23.1 | $22.0-24.2$ |
| New York | 7590 | 30.1 | $28.9-31.3$ |
| North Carolina | 12524 | 28.9 | $27.7-30.0$ |
| North Dakota | 4211 | 26.9 | $25.5-28.2$ |
| Ohio | 5579 | 29.9 | $28.8-31.4$ |
| Oklahoma | 9304 | 27.6 | $26.5-28.7$ |
| Oregon | 5002 | 28.6 | $27.2-29.9$ |
| Pennsylvania | 5798 | 29.6 | $28.4-30.9$ |
| Rhode Island | 6836 | 30.9 | $29.6-32.2$ |
| South Carolina | 7410 | 28.2 | $27.1-29.4$ |
| South Dakota | 7911 | 26.1 | $25.1-27.2$ |
| Tennessee | 4198 | 28.7 | $27.2-30.2$ |
| Texas | 9011 | 30.4 | $29.4-31.4$ |
| Utah | 5558 | 26.8 | $25.4-28.5$ |
| Vermont | 7025 | 27.4 | $26.3-28.5$ |
| Virginia | 6801 | 29.5 | $28.2-30.8$ |
| Washington | 17950 | 28.2 | $27.3-29.1$ |
| West Virginia | 5168 | 33.2 | $31.8-34.7$ |
| Wisconsin | 5827 | 27.5 | $26.3-28.7$ |
| Wyoming | 5528 | 29.5 | $28.2-30.8$ |
| United States | 360841 | 29.3 | $29.1-29.6$ |
|  |  |  |  |

[^8]Table A-3. Prevalence of Self-Reported Cholesterol Screening Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001 and 2003 Combined*

| State | Respondents | $\%$ | $95 \%$ C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Alabama | 5919 | 73.0 | $71.7-74.2$ |
| Alaska | 5268 | 68.9 | $67.2-70.6$ |
| Arizona | 6254 | 71.1 | $69.4-72.7$ |
| Arkansas | 6826 | 69.6 | $68.4-70.9$ |
| California | 8581 | 71.5 | $70.4-72.6$ |
| Colorado | 5885 | 71.5 | $70.2-72.8$ |
| Connecticut | 12493 | 78.5 | $77.6-79.4$ |
| Delaware | 7347 | 77.8 | $76.5-79.0$ |
| District of Columbia | 3744 | 81.2 | $79.6-82.7$ |
| Florida | 9356 | 77.0 | $75.7-78.2$ |
| Georgia | 11602 | 75.5 | $74.4-76.5$ |
| Hawaii | 8599 | 73.3 | $72.1-74.5$ |
| Idaho | 9412 | 66.5 | $65.4-67.5$ |
| Illinois | 7249 | 70.5 | $69.3-71.7$ |
| Indiana | 9131 | 71.7 | $70.7-72.7$ |
| lowa | 8308 | 70.0 | $68.9-71.2$ |
| Kansas | 8821 | 70.3 | $69.3-71.4$ |
| Kentucky | 14483 | 72.7 | $71.6-73.8$ |
| Louisiana | 9634 | 72.3 | $71.3-73.3$ |
| Maine | 4610 | 75.5 | $74.0-76.9$ |
| Maryland | 8529 | 78.6 | $77.5-79.7$ |
| Massachusetts | 15466 | 80.9 | $80.1-81.6$ |
| Michigan | 7107 | 74.1 | $72.9-75.2$ |
| Minnesota | 7549 | 75.6 | $74.6-76.7$ |
| Mississippi | 7059 | 70.6 | $69.4-71.8$ |
| Missouri | 8114 | 70.9 | $69.6-72.2$ |
| ara | 10 |  |  |


| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| :---: | :---: | :---: | :---: |
| Montana | 7136 | 68.2 | 66.8-69.7 |
| Nebraska | 8353 | 66.7 | 65.6-67.9 |
| Nevada | 5347 | 69.3 | 67.6-71.0 |
| New Hampshire | 8740 | 77.5 | 76.5-78.5 |
| New Jersey | 16633 | 77.9 | 77.1-78.8 |
| New Mexico | 8865 | 67.9 | 66.8-69.1 |
| New York | 9048 | 76.2 | 75.1-77.3 |
| North Carolina | 15074 | 74.7 | 73.5-75.8 |
| North Dakota | 5323 | 69.8 | 68.5-71.1 |
| Ohio | 6951 | 72.0 | 70.8-73.3 |
| Oklahoma | 11637 | 70.6 | 69.6-71.7 |
| Oregon | 6283 | 68.4 | 67.1-69.6 |
| Pennsylvania | 7070 | 73.7 | 72.5-74.8 |
| Rhode Island | 7829 | 80.7 | 79.5-81.8 |
| South Carolina | 8768 | 77.8 | 76.7-78.9 |
| South Dakota | 9994 | 68.7 | 67.7-69.6 |
| Tennessee | 5320 | 72.0 | 70.6-73.4 |
| Texas | 11565 | 70.3 | 69.4-71.2 |
| Utah | 7391 | 69.2 | 68.0-70.5 |
| Vermont | 8241 | 75.4 | 74.4-76.5 |
| Virginia | 8065 | 76.2 | 75.0-77.5 |
| Washington | 22014 | 71.3 | 70.5-72.1 |
| West Virginia | 6208 | 74.2 | 73.0-75.5 |
| Wisconsin | 7206 | 72.5 | 71.3-73.7 |
| Wyoming | 6829 | 72.1 | 70.9-73.2 |
| United States | 443236 | 73.3 | 73.1-73.6 |

[^9]Table A-4. Prevalence of Self-Reported Diabetes Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Respondents | $\%$ | 95\% C.I. |
| :--- | :---: | :---: | :---: |
| Alabama | 9149 | 8.8 | $8.2-9.4$ |
| Alaska | 8152 | 5.1 | $4.3-5.8$ |
| Arizona | 9600 | 6.2 | $5.6-6.9$ |
| Arkansas | 10947 | 7.3 | $6.8-7.9$ |
| California | 12924 | 7.4 | $6.8-8.0$ |
| Colorado | 10075 | 4.9 | $4.4-5.4$ |
| Connecticut | 18273 | 5.7 | $5.3-6.1$ |
| Delaware | 11483 | 7.1 | $6.5-7.7$ |
| District of Columbia | 6196 | 8.5 | $7.7-9.4$ |
| Florida | 15632 | 7.3 | $6.8-7.8$ |
| Georgia | 17057 | 7.7 | $7.3-8.2$ |
| Hawaii | 14688 | 6.3 | $5.7-6.8$ |
| Idaho | 14755 | 6.0 | $5.6-6.4$ |
| Illinois | 14481 | 7.0 | $6.5-7.4$ |
| Indiana | 15129 | 7.2 | $6.8-7.6$ |
| lowa | 12210 | 5.9 | $5.4-6.3$ |
| Kansas | 13682 | 5.9 | $5.5-6.3$ |
| Kentucky | 22083 | 7.3 | $6.9-7.8$ |
| Louisiana | 14976 | 7.9 | $7.4-8.4$ |
| Maine | 7172 | 6.7 | $6.1-7.3$ |
| Maryland | 13081 | 7.0 | $6.4-7.5$ |
| Massachusetts | 23228 | 5.7 | $5.3-6.0$ |
| Michigan | 13203 | 7.6 | $7.1-8.1$ |
| Minnesota | 12319 | 4.9 | $4.5-5.3$ |
| Mississippi | 11446 | 9.7 | $9.1-10.3$ |
| Missouri | 13054 | 6.7 | $6.1-7.2$ |
| a | 10 |  |  |


| State | Respondents | $\%$ | $95 \%$ C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Montana | 11318 | 5.2 | $4.8-5.7$ |
| Nebraska | 12962 | 5.6 | $5.2-6.0$ |
| Nevada | 8673 | 6.1 | $5.4-6.8$ |
| New Hampshire | 13924 | 5.7 | $5.3-6.1$ |
| New Jersey | 23087 | 6.6 | $6.1-7.0$ |
| New Mexico | 13718 | 6.0 | $5.6-6.4$ |
| New York | 13692 | 7.0 | $5.3-6.0$ |
| North Carolina | 22182 | 7.4 | $7.1-8.1$ |
| North Dakota | 8450 | 5.5 | $4.5-8.3$ |
| Ohio | 11194 | 7.7 | $9.1-10.3$ |
| Oklahoma | 18836 | 7.0 | $6.6-7.4$ |
| Oregon | 9553 | 5.9 | $5.4-6.4$ |
| Pennsylvania | 20623 | 7.0 | $6.5-7.4$ |
| Rhode Island | 11823 | 6.0 | $5.6-6.5$ |
| South Carolina | 13468 | 8.6 | $8.0-9.1$ |
| South Dakota | 15055 | 6.2 | $5.8-6.6$ |
| Tennessee | 8660 | 8.4 | $7.8-9.1$ |
| Texas | 17909 | 7.9 | $7.4-8.3$ |
| Utah | 11723 | 5.5 | $4.9-6.0$ |
| Vermont | 12675 | 5.5 | $5.0-5.9$ |
| Virginia | 12641 | 6.6 | $6.1-7.1$ |
| Washington | 27627 | 6.1 | $5.7-6.5$ |
| West Virginia | 9738 | 8.8 | $8.2-9.4$ |
| Wisconsin | 11683 | 5.4 | $4.9-5.8$ |
| Wyoming | 10507 | 5.3 | $22.6-25.5$ |
| United States | 696716 | 7.0 | $6.9-7.1$ |

[^10]Table A-5. Prevalence of Self-Reported Cigarette Smoking Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Respondents | $\%$ | $95 \%$ C.I. |
| :--- | :---: | :---: | :---: |
| Alabama | 9146 | 24.7 | $23.7-25.8$ |
| Alaska | 8142 | 26.2 | $24.7-27.6$ |
| Arizona | 9597 | 22.2 | $20.8-23.5$ |
| Arkansas | 10928 | 26.1 | $25.1-27.1$ |
| California | 12910 | 16.6 | $15.8-17.4$ |
| Colorado | 10061 | 20.0 | $19.1-21.0$ |
| Connecticut | 18236 | 20.1 | $19.3-20.8$ |
| Delaware | 11476 | 24.1 | $22.9-25.2$ |
| District of Columbia | 6184 | 21.2 | $19.9-22.5$ |
| Florida | 15605 | 24.1 | $23.1-25.0$ |
| Georgia | 17016 | 22.8 | $22.0-23.7$ |
| Hawaii | 14710 | 19.7 | $18.9-20.6$ |
| Idaho | 14730 | 19.7 | $18.9-20.5$ |
| Ilinois | 14457 | 23.2 | $22.4-24.0$ |
| Indiana | 15122 | 27.2 | $26.4-28.0$ |
| lowa | 12192 | 22.9 | $22.0-23.8$ |
| Kansas | 13677 | 21.7 | $20.9-22.5$ |
| Kentucky | 22055 | 31.6 | $30.6-32.5$ |
| Louisiana | 14929 | 25.0 | $24.2-25.8$ |
| Maine | 7164 | 24.4 | $23.2-25.5$ |
| Maryland | 13046 | 20.9 | $20.0-21.9$ |
| Massachusetts | 23178 | 19.4 | $18.8-20.1$ |
| Michigan | 13194 | 25.4 | $24.5-26.3$ |
| Minnesota | 12295 | 21.6 | $20.8-22.5$ |
| Mississippi | 11419 | 26.1 | $25.1-27.0$ |
| Missouri | 13027 | 27.0 | $25.9-28.1$ |
| a |  |  |  |


| State | Respondents | $\%$ | $95 \%$ C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Montana | 11299 | 21.2 | $20.2-22.3$ |
| Nebraska | 12948 | 21.7 | $20.8-22.6$ |
| Nevada | 8659 | 25.8 | $24.5-27.2$ |
| New Hampshire | 13902 | 22.9 | $22.1-23.7$ |
| New Jersey | 23030 | 20.1 | $19.2-21.1$ |
| New Mexico | 13689 | 22.3 | $21.4-23.1$ |
| New York | 13650 | 22.6 | $21.8-23.5$ |
| North Carolina | 22119 | 25.6 | $24.7-26.5$ |
| North Dakota | 8438 | 21.8 | $20.8-22.8$ |
| Ohio | 11174 | 26.8 | $25.8-27.8$ |
| Oklahoma | 18822 | 27.1 | $26.3-28.0$ |
| Oregon | 9535 | 21.5 | $20.5-22.5$ |
| Pennsylvania | 20593 | 25.6 | $24.8-26.5$ |
| Rhode Island | 11797 | 23.3 | $22.4-24.2$ |
| South Carolina | 13441 | 26.0 | $25.1-27.0$ |
| South Dakota | 15035 | 22.9 | $22.1-23.7$ |
| Tennessee | 8654 | 25.9 | $24.8-27.0$ |
| Texas | 17882 | 22.2 | $21.4-22.9$ |
| Utah | 11711 | 12.4 | $11.7-13.2$ |
| Vermont | 12649 | 21.2 | $20.4-22.0$ |
| Virginia | 12615 | 22.8 | $21.8-23.8$ |
| Washington | 27557 | 21.1 | $20.3-21.8$ |
| West Virginia | 9729 | 29.0 | $28.0-30.1$ |
| Wisconsin | 11676 | 23.2 | $22.3-24.2$ |
| Wyoming | 10495 | 23.5 | $22.6-24.5$ |
| United States | 695595 | 22.7 | $22.5-22.9$ |
|  |  |  |  |

[^11]Table A-6. Prevalence of Self-Reported Obesity Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ | State | Respondents | \% | 95\% C.I. ${ }^{\dagger}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alabama | 8838 | 26.4 | 25.3-27.4 | Montana | 10856 | 18.8 | 17.8-19.8 |
| Alaska | 7891 | 23.3 | 21.9-24.7 | Nebraska | 12287 | 22.7 | 21.8-23.6 |
| Arizona | 9162 | 19.6 | 18.4-20.8 | Nevada | 8247 | 20.5 | 19.2-21.9 |
| Arkansas | 10543 | 24.0 | 21.1-25.0 | New Hampshire | 13221 | 19.1 | 18.3-19.8 |
| California | 12517 | 21.5 | 20.6-22.3 | New Jersey | 21829 | 19.4 | 18.5-20.3 |
| Colorado | 9723 | 15.8 | 14.9-16.6 | New Mexico | 13174 | 20.0 | 19.1-20.8 |
| Connecticut | 17266 | 18.2 | 17.5-18.9 | New York | 13028 | 20.6 | 19.8-21.4 |
| Delaware | 10901 | 22.4 | 21.4-23.4 | North Carolina | 20937 | 23.5 | 22.6-24.4 |
| District of Columbia | 5941 | 21.0 | 19.6-22.4 | North Dakota | 8114 | 22.8 | 21.8-23.8 |
| Florida | 14847 | 19.2 | 18.4-20.1 | Ohio | 10604 | 23.4 | 22.4-24.4 |
| Georgia | 16328 | 23.8 | 22.9-24.7 | Oklahoma | 17911 | 23.5 | 22.8-24.3 |
| Hawaii | 14312 | 17.2 | 16.3-18.1 | Oregon | 9124 | 20.8 | 19.9-21.8 |
| Idaho | 14094 | 21.0 | 20.2-21.8 | Pennsylvania | 19791 | 23.1 | 22.3-23.9 |
| Illinois | 13701 | 22.2 | 21.3-23.0 | Rhode Island | 11198 | 18.3 | 17.5-19.2 |
| Indiana | 14546 | 25.0 | 24.2-25.8 | South Carolina | 12942 | 24.4 | 23.5-25.4 |
| lowa | 11679 | 23.3 | 22.4-24.2 | South Dakota | 14435 | 22.0 | 21.2-22.7 |
| Kansas | 12994 | 22.6 | 21.8-23.4 | Tennessee | 8231 | 24.3 | 23.2-25.3 |
| Kentucky | 20933 | 24.9 | 24.0-25.8 | Texas | 16944 | 25.0 | 24.2-25.7 |
| Louisiana | 14250 | 25.1 | 24.3-25.9 | Utah | 11341 | 20.1 | 19.1-21.1 |
| Maine | 6824 | 19.8 | 18.8-20.9 | Vermont | 12189 | 18.6 | 17.8-19.4 |
| Maryland | 12516 | 20.3 | 19.4-21.2 | Virginia | 12131 | 22.0 | 21.1-23.0 |
| Massachusetts | 21917 | 17.2 | 16.6-17.8 | Washington | 26365 | 20.6 | 19.9-21.3 |
| Michigan | 12791 | 25.1 | 24.2-26.0 | West Virginia | 9350 | 27.0 | 26.0-28.0 |
| Minnesota | 11951 | 21.7 | 20.9-22.5 | Wisconsin | 11275 | 21.6 | 20.7-22.5 |
| Mississippi | 10928 | 27.5 | 26.5-28.5 | Wyoming | 10223 | 19.8 | 18.9-20.6 |
| Missouri | 12562 | 23.5 | 22.5-24.5 | United States | 665702 | 22.1 | 21.9-22.3 |

[^12]Table A-7. Prevalence of Self-Reported Physical Inactivity Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Respondents | $\%$ | 95\% C.I. |
| :--- | :---: | :---: | :---: |
| Alabama | 9154 | 29.3 | $28.3-30.4$ |
| Alaska | 8156 | 21.9 | $20.5-23.3$ |
| Arizona | 9604 | 21.8 | $20.6-23.1$ |
| Arkansas | 10945 | 29.0 | $28.0-30.0$ |
| California | 12673 | 23.9 | $23.0-24.9$ |
| Colorado | 10075 | 18.7 | $17.8-19.7$ |
| Connecticut | 18286 | 22.1 | $21.4-22.9$ |
| Delaware | 11492 | 26.4 | $25.3-27.4$ |
| District of Columbia | 6196 | 22.8 | $21.5-24.2$ |
| Florida | 15639 | 27.2 | $26.2-28.2$ |
| Georgia | 17064 | 26.3 | $25.4-27.2$ |
| Hawaii | 14722 | 17.7 | $16.9-18.5$ |
| Idaho | 14752 | 19.8 | $19.0-20.5$ |
| Illinois | 14484 | 27.0 | $26.1-27.9$ |
| Indiana | 15135 | 26.7 | $225.9-27.5$ |
| lowa | 12213 | 22.9 | $22.1-23.8$ |
| Kansas | 13697 | 24.9 | $24.1-25.7$ |
| Kentucky | 22116 | 30.2 | $29.3-31.0$ |
| Louisiana | 14978 | 33.3 | $32.5-34.2$ |
| Maine | 7174 | 22.7 | $21.6-23.7$ |
| Maryland | 13090 | 23.0 | $22.0-23.9$ |
| Massachusetts | 23248 | 21.7 | $21.0-22.3$ |
| Michigan | 13213 | 23.0 | $22.1-23.9$ |
| Minnesota | 12333 | 16.1 | $15.4-16.9$ |
| Mississippi | 11457 | 32.2 | $31.2-33.2$ |
| Missouri | 13054 | 25.8 | $24.8-26.8$ |
| a |  |  |  |


| State | Respondents | $\%$ | 95\% C.I. ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| Montana | 11320 | 20.1 | $19.1-21.1$ |
| Nebraska | 12966 | 24.4 | $23.5-25.3$ |
| Nevada | 8677 | 24.2 | $22.8-25.6$ |
| New Hampshire | 13938 | 19.8 | $19.0-20.6$ |
| New Jersey | 23090 | 26.3 | $25.3-7.3$ |
| New Mexico | 13721 | 24.1 | $23.2-24.9$ |
| New York | 13686 | 26.9 | $26.0-27.8$ |
| North Carolina | 22202 | 27.0 | $26.1-27.9$ |
| North Dakota | 8448 | 22.7 | $21.7-23.7$ |
| Ohio | 11202 | 25.8 | $24.8-26.8$ |
| Oklahoma | 18852 | 31.1 | $30.3-32.0$ |
| Oregon | 9554 | 19.0 | $18.1-19.9$ |
| Pennsylvania | 20618 | 23.3 | $22.5-24.1$ |
| Rhode Island | 11834 | 24.0 | $23.1-24.9$ |
| South Carolina | 13465 | 24.8 | $23.9-25.7$ |
| South Dakota | 15051 | 23.2 | $22.4-24.0$ |
| Tennessee | 8673 | 32.7 | $31.5-33.8$ |
| Texas | 17920 | 28.3 | $27.5-29.1$ |
| Utah | 11719 | 18.6 | $17.7-19.5$ |
| Vermont | 12676 | 19.0 | $18.3-19.8$ |
| Virginia | 12642 | 23.4 | $22.5-24.3$ |
| Washington | 27635 | 16.7 | $16.1-17.4$ |
| West Virginia | 9743 | 28.9 | $27.9-29.9$ |
| Wisconsin | 11690 | 19.7 | $18.9-20.6$ |
| Wyoming | 10515 | 21.0 | $20.1-21.8$ |
| United States | 696787 | 25.1 | $24.9-25.3$ |
|  |  |  |  |

[^13]Table A-8. Prevalence of Self-Reported Poor Health Among the Total U.S. Population, by State, Behavioral Risk Factor Surveillance System (BRFSS), 2001-2003*

| State | Respondents | $\%$ | 95\% C.I. |
| :--- | :---: | :---: | :---: |
| Alabama | 9136 | 20.0 | $19.2-20.9$ |
| Alaska | 8151 | 13.3 | $12.2-14.4$ |
| Arizona | 9555 | 15.6 | $14.5-16.7$ |
| Arkansas | 10928 | 18.8 | $18.0-18.6$ |
| California | 12925 | 15.9 | $15.1-16.7$ |
| Colorado | 10062 | 13.0 | $12.2-13.8$ |
| Connecticut | 18241 | 11.8 | $11.2-12.4$ |
| Delaware | 11483 | 13.9 | $13.0-14.7$ |
| District of Columbia | 6181 | 12.7 | $11.7-13.7$ |
| Florida | 15550 | 15.4 | $14.6-16.2$ |
| Georgia | 17021 | 16.7 | $16.0-17.4$ |
| Hawaii | 14710 | 11.8 | $11.1-12.5$ |
| Idaho | 14732 | 13.5 | $12.9-14.1$ |
| Illinois | 14471 | 14.6 | $13.9-15.2$ |
| Indiana | 15111 | 15.7 | $15.0-16.3$ |
| lowa | 12185 | 11.1 | $10.4-11.7$ |
| Kansas | 13666 | 12.5 | $11.9-13.1$ |
| Kentucky | 22069 | 22.6 | $21.8-23.3$ |
| Louisiana | 14910 | 17.2 | $16.5-17.9$ |
| Maine | 7151 | 13.6 | $12.7-14.4$ |
| Maryland | 13063 | 12.7 | $12.0-13.5$ |
| Massachusetts | 23177 | 12.5 | $11.9-13.0$ |
| Michigan | 13197 | 14.3 | $13.6-15.0$ |
| Minnesota | 12309 | 11.1 | $10.5-11.7$ |
| Mississippi | 11414 | 23.2 | $22.4-24.1$ |
| Missouri | 13030 | 16.3 | $15.5-17.1$ |
| a |  |  |  |


| State | Respondents | \% | 95\% C.I. $\dagger$ |
| :--- | :---: | :---: | :---: |
| Montana | 11299 | 12.7 | $11.9-13.4$ |
| Nebraska | 12949 | 12.8 | $12.2-13.4$ |
| Nevada | 8677 | 16.2 | $15.0-17.4$ |
| New Hampshire | 13903 | 10.6 | $10.1-11.2$ |
| New Jersey | 23005 | 14.8 | $14.0-15.6$ |
| New Mexico | 13704 | 17.0 | $16.3-17.8$ |
| New York | 13619 | 16.4 | $15.6-17.2$ |
| North Carolina | 22147 | 18.9 | $18.1-197$ |
| North Dakota | 8419 | 12.7 | $11.9-13.4$ |
| Ohio | 11179 | 13.7 | $13.0-14.5$ |
| Oklahoma | 18801 | 18.0 | $17.4-18.6$ |
| Oregon | 9541 | 15.5 | $14.7-16.4$ |
| Pennsylvania | 20594 | 14.2 | $13.5-14.8$ |
| Rhode Island | 11813 | 14.0 | $13.3-14.7$ |
| South Carolina | 13380 | 16.5 | $15.8-17.3$ |
| South Dakota | 15030 | 12.3 | $11.7-12.9$ |
| Tennessee | 8667 | 19.4 | $18.5-20.3$ |
| Texas | 17885 | 20.5 | $19.9-21.2$ |
| Utah | 11712 | 11.6 | $10.9-12.4$ |
| Vermont | 12651 | 10.9 | $10.3-11.4$ |
| Virginia | 12621 | 13.6 | $12.8-14.3$ |
| Washington | 27604 | 13.2 | $12.7-13.8$ |
| West Virginia | 9712 | 23.1 | $22.2-24.0$ |
| Wisconsin | 11654 | 11.5 | $10.8-12.2$ |
| Wyoming | 10482 | 11.9 | $11.2-12.5$ |
| United States | 695476 | 15.7 | $15.5-15.9$ |
|  |  |  |  |

[^14]
## County Definitions

We used Federal Information Processing Standard (FIPS) ${ }^{1}$ codes to link county definitions across multiple data sets in this atlas. To ensure accurate linking of counties across the data sets, the following modifications were made:

## Independent Cities

The following independent cities were retained in the geographic database as discrete entities separate from adjacent counties.

| Independent <br> City | State | Original <br> FIPS Code | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Baltimore | Maryland | 24510 | 24007 |
| St. Louis | Missouri | 29510 | 29191 |
| Carson City | Nevada | 32510 | 32025 |
| Suffolk | Virginia | 51800 | 51123 |

Alaska

| Original <br> County | Original County <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Aleutian Islands East | 2013 | Aleutian Islands | 2010 |
| Aleutian Islands West | 2016 | Aleutian Islands | 2010 |
| Denali Borough | 2068 | Yukon-Koyukuk | 2290 |
| Kobuk | 2140 | Yukon-Koyukuk | 2290 |
| Skagway-Hoonah-Angoon | 2232 | Skagway-Yakutat-Angoon | 2231 |
| Yakutat | 2282 | Skagway-Yakutat-Angoon | 2231 |

## Arizona

| Original <br> County | Original County <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Yuma | 4027 | LaPaz | 4012 |

Hawaii

| Original <br> County | Original County <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Kalawao | 15005 | Maui | 15009 |

## Virgínia

Virginia has 34 independent cities. We used the 1996 Area Resource File database ${ }^{2}$ to incorporate data from these cities into their adjacent counties, which is standard practice.

| Independent <br> City | Independent City <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Bedford | 51515 | Bedford | 51019 |
| Bristol | 51520 | Washington | 51191 |
| Buena Vista | 51530 | Rockbridge | 51163 |
| Charlottesville | 51540 | Albemarle | 51003 |
| Clifton Forge | 51560 | Allegheny | 51005 |
| Colonial Heights | 51570 | Chesterfield | 51041 |
| Covington | 51580 | Allegheny | 51005 |
| Danville | 51590 | Pittsylvania | 51143 |
| Emporia | 51595 | Greensville | 51081 |
| Fairfax | 51600 | Fairfax | 51059 |
| Falls Church | 51610 | Fairfax | 51059 |
| Franklin | 51620 | South Hampton | 51175 |
| Fredericksburg | 51630 | Spotsylvania | 51177 |
| Galax | 51640 | Grayson | 51077 |
| Harrisonburg | 51660 | Rockingham | 51165 |
| Hopewell | 51670 | Prince George | 51149 |
| Lexington | 51678 | Rockbridge | 51163 |
| Lynchburg | 51680 | Campbell | 51031 |
| Manassas | 51683 | Prince William | 51153 |
| Manassas Park | 51685 | Prince William | 51153 |
| Martinsville | 51690 | Henry | 51089 |


| Independent <br> City | Independent City <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Norfolk | 51710 | Norfolk | 51129 |
| Petersburg | 51730 | Dinwiddie | 51053 |
| Portsmouth | 51740 | Norfolk | 51129 |
| Radford | 51750 | Montgomery | 51121 |
| Richmond | 51760 | Henrico | 51087 |
| Roanoke | 51770 | Roanoke | 51161 |
| Salem | 51775 | Roanoke | 51161 |
| South Boston | 51780 | Halifax | 51083 |
| Staunton | 51790 | Augusta | 51015 |
| Waynesboro | 51820 | Augusta | 51015 |
| Williamsburg | 51830 | James City | 51095 |
| Winchester | 51840 | Frederick | 51069 |

## Yellowstone National Park

| Original <br> County | Original County <br> FIPS Code | Incorporated into <br> Adjacent County | Modified <br> FIPS Code |
| :--- | :---: | :---: | :---: |
| Yellowstone National |  |  |  |
| Park (Part), Montana | 30113 | Park | 30067 |

## Data Sources

## Heart Disease and Stroke Mortality Data

We obtained death certificate data through the National Center for Health Statistics' National Vital Statistics System, which is a compilation of statistics from all death certificates filed in the 50 states and the District of Columbia. ${ }^{3}$ Heart disease deaths were defined as those for which the underlying cause of death listed on the death certificate was diseases of the heart, defined according to the International Classification of Diseases (ICD-9 codes 390-398, 402, and 404-429; ICD-10 codes 100-I09, I11, I13, I20-I51). ${ }^{45}$ Stroke deaths were defined as those for
which the underlying cause of death listed on the death certificate was cerebrovascular disease (ICD-9-CM codes 430-438). ${ }^{4}$ For each decedent, underlying cause of death, age, race, ethnicity, gender, and county of residence at the time of death were abstracted from computerized death certificate files.

## Population Data

For heart disease mortality rates during 1996-2000, we used postcensal population estimates for 1996-1999 and a special "bridged-race" version of the 2000 census population estimates that allowed us to aggregate the data across 1996-2000. CDC's National Center for Health Statistics has produced bridged-race versions of 2000 census data to allow comparisons between these data and earlier reports, which used fewer race/ethnicity categories (see the Definition of American Indians and Alaska Natives section on pages $64-65$ of this appendix for a discussion of race/ethnicity categories used for federal data collection). ${ }^{6}$ For stroke mortality rates during 1991-1998, we used postcensal estimates calculated by the U.S. Bureau of the Census through extrapolation of linear trends in population growth and intercounty migration patterns between the 1980 and 1990 censuses.

## Map Projections

We used several different map projections to produce the county-level maps in this publication. For the contiguous United States, an Albers Conic Equal Area projection was used. For Alaska, the Miller's Cylindrical projection was used. For the Hawaii map, we used geographic coordinates (latitude and longitude). Neither Alaska nor Hawaii is in proper geographic scale relative to the continental United States on the national maps. The combination of different projections and scales allowed for presentation of a relatively familiar orientation of these geographic features.

The coordinate information for the contiguous 48 states was projected using the Albers Conic Equal Area projection with the following parameters:

Spheroid: Clarke 1866
1st Standard Parallel: 29.500
False Easting: 0.000
Reference Latitude: 37.500

Central Meridian: -96.000
2nd Standard Parallel: 45.500
False Northing: 0.000

The coordinate information for Alaska used the Miller's Cylindrical projection with the following parameters:

Spheroid: Sphere

Central Meridian: 0.000

## Definition of American Indians and Alaska Natives

The definition for American Indian and Alaska Native (AI/AN) people used in this publication is based on the definition established in 1977 by Directive 15 of the Office of Management and Budget (OMB), which is the federal agency that defines standards for government publications.? The categories are not based on biological or anthropological concepts. OMB developed categories for racial and ethnic groups in response to the need for standardized data for record keeping and data collection and presentation by federal agencies (e.g., to conduct federal surveys, collect decennial census data, and monitor civil rights laws).

In 1997, OMB issued new race and ethnicity categories following criticism that the categories did not reflect the country's increasing diversity. All federal agencies were instructed to begin collecting and analyzing data using the new categories no later than January 1, 2003. However, the census and vital statistics data used in this publication were collected before the 1997 directive was implemented. Consequently, the racial and ethnic categories analyzed here are consistent with the 1977 directive.

The 1977 definition for American Indian or Alaska Native is as follows: A person having origins in any of the original peoples of North America and who maintains tribal affiliation or community attachment.

## Spatial Geometry

The geographic database used for the county-level maps in this publication came from the Environmental Systems Research Institute's (ESRI) ArcUSA database, which includes spatial geometry and characteristics of all U.S. counties. ESRI modified the 1973 Digital Line Graph source data produced by the U.S. Geological Survey to update county boundaries through 1988. The geographic scale of the spatial geometry (i.e., linework) used is $1: 2$ million, which is sufficient to identify major county features. Mortality and population data were linked to county geography using FIPS codes.

## Calculation of Spatially Smoothed and Age-Adjusted Death Rates

## Rationale for Spatial Smoothing

Although county death rates provide a high degree of spatial specificity, rates in counties with small populations and few heart disease or stroke deaths can be unstable. This problem is particularly relevant when examining geographic disparities among AI/AN populations because many counties have small or nonexistent numbers of this population. We used two approaches to reduce the statistical instability of county death rates for heart disease and stroke: 1) temporal aggregation of the data (1996-2000 for heart disease, 1991-1998 for stroke) and 2) application of a statistical procedure known as spatial smoothing.

We chose to spatially smooth heart disease and stroke death rates using a spatial moving average. The number of deaths (numerators) and population counts (person-year denominators) for each county were combined with the deaths and population counts of the immediate neighboring counties (i.e., contiguous counties), and then divided to produce an average rate. We used the contiguity matrix for all U.S. counties from the 1996 Area Resource File database to identify contiguous counties and to perform spatial smoothing. Thus, a single county's heart disease or stroke mortality rate actually represents an average of the rates of that county and all of its contiguous neighbors.

## Calculation of Death Rates

Spatially smoothed and age-adjusted death rates were calculated at the county level for all $\mathrm{AI} / \mathrm{AN}$ people and again for $\mathrm{AI} / \mathrm{AN}$ women and men separately. Heart disease and stroke deaths were obtained from the National Vital Statistics System and included all deaths for which the underlying cause of death reported on the death certificates was diseases of the heart (ICD-9-CM codes 390-398, 402, or 404-429: ICD-10 codes I00-I09, I11, I13, or I20-I51) or cerebrovascular disease (ICD-9-CM codes 430-438). ${ }^{45}$ Population data were obtained from the U.S. Bureau of the Census.

For each county, deaths (numerators) and population counts (denominators) for 10-year age groups (i.e., ages 35-44, 45-54, 55-64, 65-74, 75-84, and $\geq 85$ years) were summed across the years. County numerators and denomi-
nators were then combined with numerators and denominators of all neighboring counties. Neighboring counties were defined solely by contiguity (as opposed to distance). The combined numerators were divided by the combined denominators to produce spatially smoothed, age-specific (i.e., by 10 -year age group) death rates. These spatially smoothed rates were then directly age-adjusted to the 2000 U.S. population for 10 -year age groups starting at 35 . These calculations were repeated separately by gender.

Two constraints were applied to the calculation of county death rates. A stroke death rate was not calculated for any county for which the total number of stroke deaths in that county plus its neighbors was fewer than 20 during 1991-1998. ${ }^{8}$ A heart disease death rate was not calculated for any county for which the total number of heart disease deaths in that county plus its neighbors was fewer than 20 during 1996-2000. To avoid calculating rates for counties that had no AI/AN population but whose neighboring counties had significant populations, rates were calculated only for counties with a population count of 5 or more (i.e., person-years were $\mathbf{2 5}$ ) during 1996-2000 for heart disease and 1991-1998 for stroke.

Unfortunately, death rates could not be adjusted to account for misreporting of AI/AN people as "white" on death certificates (see the Introduction, page 2, for a discussion of this issue). Although the Indian Health Service (IHS) has established a series of weights that can be used to estimate more accurate death rates for AI/AN populations, these weights are designed to be applied to IHS areas, not U.S. counties. ${ }^{9}$ Because the weights were calculated on the basis of deaths from all causes combined, even the adjusted heart disease and stroke death rates for $\mathrm{AI} / \mathrm{AN}$ people may still be less than the true rates for this population. ${ }^{10}$

## Standard Population Weights

Because we calculated directly age-adjusted heart disease and stroke death rates for people ages 35 years and older, but not for the entire age range of the population, we had to recalculate the standard weights for the 2000 U.S. standard population. New weights for age groups 35-44 through $\geq 85$ years were calculated using a two-step procedure. First, we calculated the sum of the original 2000 standard weights for 10 year age groups $35-44$ through $\geq 85$ years. Second, for each age group, we divided the original weight by the sum of the weights for ages $\geq 35$
years. The resulting quotients are the new standard population weights. The weights were rounded to two decimal places and used to calculate directly age-adjusted death rates for people ages $\geq 35$ years.

2000 U.S. Projected Standard Population Weights

| Age Group (yrs) | Weight |
| :---: | :--- |
| All ages | 1.000000 |
| $<1$ | 0.013818 |
| 1 | 0.013687 |
| $2-4$ | 0.041630 |
| 5 | 0.014186 |
| $6-8$ | 0.042966 |
| 9 | 0.015380 |
| $10-11$ | 0.030069 |
| $12-14$ | 0.042963 |
| $15-17$ | 0.043035 |
| $18-19$ | 0.029133 |
| $20-24$ | 0.066478 |
| $25-29$ | 0.064530 |
| $30-34$ | 0.071044 |
| $35-39$ | 0.080762 |
| $40-44$ | 0.081851 |
| $45-49$ | 0.072118 |
| $50-54$ | 0.062716 |
| $55-59$ | 0.048454 |
| $60-64$ | 0.038793 |
| $65-69$ | 0.034264 |
| $70-74$ | 0.031773 |
| $75-79$ | 0.027000 |
| $80-84$ | 0.017842 |
| $\geq 85$ | 0.015508 |
|  |  |

## Contiguity Matrix for Alaska

We used the contiguity matrix for all U.S. counties from the 1996 Area Resource File database to perform spatial smoothing of heart disease and stroke mortality rates for this publication. However, this database did not include information for counties in Alaska, because Alaska was considered to be a single geographic unit. Because we are interested in the geographic patterns of heart disease and stroke mortality within the state, we created the following contiguity matrix for the counties in Alaska:

| FIPS Codes for Alaska's 23 Counties | FIPS Codes for Neighboring Counties* |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2010 | 2164 |  |  |  |  |  |  |  |
| 2020 | 2170 | 2261 | 2122 |  |  |  |  |  |
| 2050 | 2070 | 2270 | 2170 | 2164 | 2290 | 2122 |  |  |
| 2060 | 2164 | 2070 |  |  |  |  |  |  |
| 2070 | 2164 | 2060 | 2050 |  |  |  |  |  |
| 2090 | 2290 | 2240 |  |  |  |  |  |  |
| 2100 | 2231 | 2110 |  |  |  |  |  |  |
| 2110 | 2100 | 2280 |  |  |  |  |  |  |
| 2122 | 2020 | 2170 | 2050 | 2164 | 2150 | 2261 |  |  |
| 2130 | 2201 | 2280 |  |  |  |  |  |  |
| 2150 | 2122 | 2164 |  |  |  |  |  |  |
| 2164 | 2060 | 2070 | 2050 | 2122 | 2010 |  |  |  |
| 2170 | 2290 | 2240 | 2261 | 2020 | 2050 | 2122 |  |  |
| 2180 | 2270 | 2290 | 2188 |  |  |  |  |  |
| 2185 | 2188 | 2290 |  |  |  |  |  |  |
| 2188 | 2185 | 2290 | 2180 |  |  |  |  |  |
| 2201 | 2280 | 2130 |  |  |  |  |  |  |
| 2220 | 2231 | 2280 |  |  |  |  |  |  |
| 2231 | 2261 | 2100 | 2220 | 2110 | 2280 |  |  |  |
| 2240 | 2290 | 2090 | 2170 | 2261 |  |  |  |  |
| 2261 | 2240 | 2170 | 2020 | 2231 | 2122 |  |  |  |
| 2270 | 2290 | 2050 | 2180 |  |  |  |  |  |
| 2280 | 2220 | 2201 | 2231 | 2130 |  |  |  |  |
| 2290 | 2185 | 2188 | 2270 | 2050 | 2170 | 2240 | 2090 | 2180 |

[^15]
## Data Source

We obtained data for eight important risk factors for heart disease and stroke from the Behavioral Risk Factor Surveillance System (BRFSS). BRFSS data are collected monthly by state departments of health through telephone interviews of noninstitutionalized adults aged 18 years or older. The states use a multistage design for stratified random sampling of the telephone numbers dialed. Complete details of the BRFSS methodology have been published elsewhere. ${ }^{11-13}$

The BRFSS includes a set of core questions that are asked every year in all states, as well as a set of rotating core questions that are asked every other year. This publication presents prevalence data for the following risk factors included in the annual core questions: diabetes, cigarette smoking, obesity, physical inactivity, and poor health. From the rotating questions that are asked in odd-numbered years, it presents data on high blood pressure, high blood cholesterol, and cholesterol screening.

BRFSS core questions are available in English and Spanish. If the interviewer determines that the respondent is not proficient in either language, the interviewer does not administer the survey and notes that the interview was ended because of a language barrier.

Once the monthly state data are collected, they are sent to CDC to be edited and checked for accuracy. CDC staff members aggregate the monthly data files for each state to create annual totals. These totals are then weighted according to the respondents' probability of being sampled, given the race, age, and gender of the population from which they were selected. Weighting is based on the most current census data for each state. The prevalence of each risk factor for each state is calculated from the weighted data.

Because of the small number of $\mathrm{AI} / \mathrm{AN}$ respondents in the BRFSS, we combined data for 2001-2003 to increase the precision of our estimates. Prevalence estimates for states that reported fewer than $50 \mathrm{AI} / \mathrm{AN}$ respondents were considered unreliable and are not presented in this publication. ${ }^{14}$

## Risk Factor Data

## Telephone Coverage

A recent study indicates that about $17 \%$ of AI/AN people do not have telephones in their homes. ${ }^{15}$ This percentage is higher than that of any other U.S. racial/ethnic group. The percentages within this population vary sharply depending on where people live; only $47 \%$ of AI/AN people living on reservations have telephones compared with $75 \%$ of those who live in rural areas and $88 \%$ of those who live in urban areas. ${ }^{15,16}$

Other studies have found that AI/AN people who live in households without telephones are more likely to be physically inactive and to smoke cigarettes. ${ }^{17-19}$ Therefore, the findings reported in this atlas are more likely to represent AI/AN people who live in urban areas and not on reservations, and they likely underestimate the prevalence of some risk factors for heart disease and stroke.

## Definition of Risk Factors

For this publication, we defined eight risk factors for heart disease and stroke on the basis of specific questions from the BRFSS during 20012003. As of 1996, state health departments also can ask about regular aspirin use, prior history of heart disease, and prior history of stroke on their BRFSS questionaires. However, only a few states do so, and many of these states do not have large enough AI/AN populations to generate stable estimates. Therefore, data for these heart disease and stroke risk factors are not included in this atlas.

## Map Projection

We combined two map projections to produce the risk factor maps in this publication. For the contiguous United States, an Albers Conic Equal Area projection was used. For Alaska, the Miller's Cylindrical projection was used. Neither Alaska nor Hawaii is in proper geographic scale relative to the continental United States on the risk factor maps. The combination of different projections and scales allowed for presentation of a relatively familiar orientation of these geographic features.

## Definition of American Indians and Alaska Natives

Respondents to the BRFSS were asked to select a race of origin from the following list: White, Black or African American, Asian, Native Hawaiian or Other Pacific Islander, American Indian/Alaska Native, or Other (Specify). Only those respondents selecting American Indian/ Alaska Native were included in this atlas.

## Spatial Geometry

The geographic database used for the risk factor maps in this publication came from the Environmental Systems Research Institute's (ESRI) ArcUSA database, which includes spatial geometry and characteristics of all U.S. counties. The geographic scale of the spatial geometry used is $1: 42,874,983$, which is sufficient to identify state features.

| Risk Factor | Definition |
| :---: | :---: |
| High Blood Pressure | Based on "yes" responses to the following question: "Have you ever been told by a doctor, nurse, or other health professional that you have high blood pressure?" |
| High <br> Cholesterol | Based on "yes" responses to the following question: "Have you ever been told by a doctor or other health professional that your blood cholesterol is high?" |
| Cholesterol Screening | Based on "yes" responses to the following question: "Have you ever had your blood cholesterol checked?" |
| Diabetes | Based on "yes" responses to the following question: "Have you ever been told by a doctor that you have diabetes?" |
| Cigarette Smoking | Based on "yes" responses to the following question: "Have you smoked at least 100 cigarettes in your entire life?" Respondents who answered "yes" were then asked, "Do you now smoke every day, some days, or not at all?" People who reported smoking at least 100 cigarettes in their lifetime and smoking now every day or some days were defined as current smokers. |
| Obesity | Based on the following calculation of body mass index (BMI) from self-reported height and weight: \{[weight in lbs. $\times 0.4536] /[($ height in inches $\times 0.2540) 2]\} \times 100$. BMI $\geq 30.0$ was considered obese. |
| Physical Inactivity | Based on "no" responses to the following question: "During the past month, other than your regular job, did you participate in any physical activities or exercise such as running, calisthenics, golf, gardening, or walking for exercise?" |
| Poor Health | Based on people who answered "poor" to the following question: "Would you say that in general your health is excellent, very good, good, fair, or poor?" |

## Calculation of Prevalence Estimates

Because of the complex survey methodology used to produce prevalence estimates for this publication, we used SUDAAN statistical software to calculate standard errors and $95 \%$ confidence intervals. The prevalences reported in this atlas are weighted according to the respondents' probability of being sampled, given the race, age, and gender of the state population from which they were selected. No statistical tests were performed for comparison, so the findings of this publication should be considered descriptive in nature.

1. National Institute of Standards and Technology. Federal Information Processing Standards Publication 55-3: Codes for Named Populated Places, Primary County Divisions, and Other Locational Entities of the United States, Puerto Rico, and the Outlying Areas. Gaithersburg, MD: U.S. Department of Commerce; 1994. Available at http://www.itl.nist.gov/fipspubs/fip55-3.htm.
2. Bureau of Health Professions. Area Resource File. Rockville, MD: U.S. Department of Health and Human Services, Health Resources and Services Administration; 1996. Available at http://www.arfsys.com.
3. CDC. National Vital Statistics System Web site. Available at http://www.cde.gov/nchs/nvss.htm.
4. U.S. Department of Health and Human Services. The International Classification of Diseases, 9th Revision, Clinical Modification. Washington, DC: Public Health Service, Health Care Financing Administration; 1980. HHS publication no. (PHS) 80-1260.
5. World Health Organization. International Classification of Diseases and Related Health Problems, 10th Revision, Clinical Modification. Geneva: World Health Organization; 1992.
6. CDC. National Center for Health Statistics Web site. U.S. Census Populations with Bridged Race Categories: Bridged-Race Population Estimates for April 1, 2000. Available at http://www.cdc.gov/nchs/about/major/dvs/popbridge/popbridge.htm.
7. Wallman KK, Hodgdon J. Race and ethnic standards for federal statistics and administrative reporting. Statistical Reporter 1977;77(10):450-454.
8. Hoyert DL, Arias E, Smith BL, Murphy SL, Kochanek KD. Deaths: final data for 1999. National Vital Statistics Reports 2001;49(8):110.
9. Indian Health Service. Adjusting for Miscoding of Indian Race on State Death Certificates. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service; 1996.
10. Rhoades DA. Racial misclassification and disparities in cardiovascular disease among American Indians and Alaska Natives. Circulation 2005;111(10):1250-6.
11. CDC. Technical Information and Data: BRFSS User's Guide. Atlanta: U.S. Department of Health and Human Services; 1998. Available at http://www.cdc.gov/ brfss/technical_infodata/usersguide.htm.
12. Holtzman D. Analysis and interpretation of data from the U.S. Behavioral Risk Factor Surveillance System (BRFSS). In: McQueen DV, Puska P, et al. Global Behavioral Risk Factor Surveillance. New York: Kluwer Academic/Plenum Publishers; 2003:35-46.
13. Mokdad AH, Stroup DF, Giles WH. Public health surveillance for behavioral risk factors in a changing environment: recommendations from the Behavioral Risk Factor Surveillance Team. Morbidity and Mortality Weekly Report 2003;52(RR-9).
14. CDC. 2000 BRFSS Summary Prevalence Report. Atlanta: U.S. Department of Health and Human Services; May 2001:9. Available at http://www.cdc.gov/brfss/pubrfdat. htm.
15. National Telecommunications and Information Administration. Falling Through the Net: Defining the Digital Divide. Washington, DC: U.S. Department of Commerce; 1999.
16. Bureau of the Census. Housing of American Indians on reservations-equipment and fuels. Bureau of the Census Statistical Brief 1995. Publication no. SB/95-11.
17. Pearson D, Cheadle A, Wagner E, Tonsberg R, Psaty BM. Differences in sociodemographic, health status, and lifestyle characteristics among American Indians by telephone coverage. Preventive Medicine 1994;23(4):461-4.
18. Cheadle A, Pearson D, Wagner E, Psaty BM, Diehr P, Koepsell T. Relationship between socioeconomic status, health status, and lifestyle practices of American Indians: evidence from a Plains reservation population. Public Health Reports 1994;109(3):405-13.
19. Peterson DE, Remington PL, Kuykendall MA, Kanarek MS, Diedrich JM, Anderson HA. Behavioral risk factors of Chippewa Indians living on Wisconsin reservations. Public Health Reports 1994;109(6):820-3.


# American Indian and Alaska Native Health Organizations 

Native American Women's Health Education Resource Center PO Box 572, Lake Andes, SD 57356-0572

Phone: 605-487-7072
Web site: http://www.nativeshop.org/nawherc.html

The Native American Women's Health Education Resource Center is operated by the Native American Community Board (NACB). The $N A C B$ was formed in 1985 by a group of Native Americans living on or near the Yankton Sioux Reservation in South Dakota to address pertinent issues of health, education, land and water rights, and economic development of Native American people.

## National Indian Health Board

1385 S. Colorado Blvd, Suite A707, Denver, CO 80222
Phone: 303-759-3075, Fax: 303-759-3674
Web site: http://www.nihb.org
The National Indian Health Board (NIHB) represents Tribal Governments that operate their own health care delivery systems through contracting and compacting, as well as those that receive health care directly from the Indian Health Service. The NIHB is a nonprofit organization that conducts research, policy analysis, program assessment and development, national and regional meeting planning, project management, and training and technical assistance programs. These services are provided to Tribes, Area Health Boards, Tribal organizations, federal agencies, and private foundations.

Association of American Indian Physicians 1225 Sovereign Row, Suite 103, Oklahoma City, OK 73108 Phone: 405-946-7072, Fax: 405-946-7651
Web site: http://www.aaip.com
The Association of American Indian Physicians was founded to pursue excellence in Native American health care by promoting education in the medical disciplines; honoring traditional healing practices; and restoring the balance of mind, body, and spirit.

Association of Native American Medical Students
1225 Sovereign Row, C-9, Oklahoma City, OK 73108
Phone: 405-946-7072
Web site: http://www.aaip.com/anams/anams.html
The Association of Native American Medical Students was founded to provide support and a resource network for all Native Americans enrolled in the various allied health professions schools, to increase. the number of Native American students in medicine and other health professions, and to promote its exposure and recognition on a national level throughout the medical community.

Indians into Medicine
University of North Dakota
School of Medicine and Health Science
PO Box 9037, Grand Forks, ND 58202-9037
Phone: 701-777-3037, Fax: 701-777-3277
Web site: http://www.med.und.nodak.edu/depts/inmed/home.htm
Indians into Medicine addresses three major problem areas: 1) too few health professionals in American Indian communities, 2) too few American Indian health professionals, and 3) the substandard level of health and health care in American Indian communities.

## Indian Health Service Headquarters

The Reyes Building
801 Thompson Avenue, Suite 440
Rockville, MD 20852-1627
Phone: 301-443-1083, Fax: 301-443-4794
Web site: http://www.ihs.gov
The Indian Health Service (IHS) is an agency within the U.S. Department of Health and Human Services that is responsible for providing federal health services to American Indians and Alaska Natives. The IHS is the principal federal health care provider and health advocate for these populations, and its goal is to ensure that comprehensive, culturally acceptable personal and public health services are available and accessible to American Indians and Alaska Natives.

## National Council of Chief Medical Officers, Indian Health Service

Chief Medical Officer

Indian Health Service (IHS)
801 Thompson Avenue, Suite 440
Rockville, MD 20852
Aberdeen Area IHS
Federal Building, 115 4th Avenue, S.E.
Aberdeen, SD 57401

Alaska Area IHS
4141 Ambassador Drive
Anchorage, AK 99508
Albuquerque Area IHS
5300 Homestead Road, N.E.
Albuquerque, NM 87110
Bemidji Area IHS
522 Minnesota Avenue, N.W.
Bemidji, MN 56601
Billings Area IHS
PO Box 36600
Billings, MT 59107
California Area IHS
650 Capitol Mall, Suite 7-100
Sacramento, CA 95814
Nashville Area IHS
711 Stewarts Ferry Pike
Nashville, TN 37214-2634
Navajo Area IHSPO Box 9020Window Rock, AZ 86515
Oklahoma Area IHS
Five Corporate Plaza
3625 N.W. 56th Street
Oklahoma City, OK 73112
Phoenix Area IHS
Two Renaissance Square
40 N . Central Avenue, Suite 600
Phoenix, AZ 85004-4424
Portland Area IHS
1220 S.W. Third Avenue
Portland, OR 97204-2892
Tucson Area IHS
7900 South J Stock Road
Tucson, AZ 85746-9352
Federal Government Agencies
Indian Health Service Headquarters
The Reyes Building
801 Thompson Avenue, Suite 440
Rockville, MD 20852-1627
Phone: 301-443-1083, Fax: 301-443-4794
Web site: http://www.ihs.gov
The Indian Health Service (IHS) is an agency within the U.S. Departmentof Health and Human Services that is responsible for providing federalhealth services to American Indians and Alaska Natives. The IHS is theprincipal federal health care provider and health advocate for thesepopulations, and its goal is to ensure that comprehensive, culturallyacceptable personal and public health services are available and acces-
sible to American Indians and Alaska Natives.

Office of the Associate Director for Minority Health Centers for Disease Control and Prevention (CDC) 1600 Clifton Road, MS D-39, Atlanta, GA 30333
Phone: 404-639-7210
Web site: http://www.cdc.gov/od/admh
The mission of the Office of the Associate Director for Minority Health is to improve the health of African American, Asian American and Pacific Islander, Hispanic American, and Native American and Alaska Native citizens and, where appropriate, members of similar ethnic/racial subgroups both in and outside the United States, through policy development and program analysis at the CDC and the Agency for Toxic Substances and Disease Registry.

Office of Women's Health Centers for Disease Control and Prevention 1600 Clifton Road, MS D-51, Atlanta, GA 30333
Phone: 404-639-7230, Fax: 404-639-7331
Web site: http://www.cdc.gov/od/owh
The Office of Women's Health is dedicated to in-depth research and dissemination of information and public policy regarding women's health.

Office of Minority Health
Division of Information and Education Rockwall II Building, Suite 1085
5515 Security Lane, Rockville, MD 20852
Phone: 301-443-5224, Fax: 301-443-1426
Web site: http://www.omhrc.gov
The Office of Minority Health, which operates under the U.S. Department of Health and Human Services, works to improve collection and analyses of data on the health of racial and ethnic minority populations, and it monitors efforts to achieve Healthy People 2010 goals for minority health.

The Office of Minority Health Resource Center
Division of Information and Education
Rockwall II Building, Suite 1000
5600 Fishers Lane, Rockville, MD 20857
Phone: 1-800-444-6472
Web site: http://www.omhrc.gov

The Office of Minority Health Resource Center was established to assist in the exchange of information and analyses of minority health issues. The center collects and distributes information on a wide variety of health topics and facilitates the exchange of information on minority health issues.

Office of Research on Women's Health
National Institutes of Health
Building 1, Room 201, Bethesda, MD 20892
Web site: http://www4.od.nih.gov/orwh/index.html
The goal of the Office of Research on Women's Health is to ensure that research conducted and supported by the National Institutes of Health addresses issues of women's health, and that there is appropriate inclusion of women in clinical research.

National Heart, Lung, and Blood Institute
National Institutes of Health
Building 31, Suite 4A10, MSC 2480
31 Center Drive, Bethesda, MD 20892
Web site: http://www.nhlbi.nih.gov/nhlbi/nhlbi.htm
The National Heart, Lung, and Blood Institute is a national program dedicated to research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases, as well as sleep disorders.

# National Center of Minority Health and Health Disparities Office of Research on Minority Health 6707 Democracy Blvd., Suite 800 <br> Bethesda, MD 20892-5465 <br> Phone: 301-402-1366, Fax: 301-480-4049 

The Office of Research on Minority Health (ORMH) was founded in 1999 by the National Institutes of Health to help solve research questions that result from the disparity of health status among Americans. The ORMH's mission is to support and promote biomedical research aimed at improving the health status of minority Americans across the life span and programs aimed at expanding the participation of under-represented minorities in all aspects of biomedical and behavioral research.

Agency for Healthcare Research and Quality Center for Cost and Financing Studies
2101 East Jefferson Street, Suite 500
Rockville, MD 20852
Phone: 301-594-1406, Fax: 301-594-2166
Web site: http://www.ahrq.gov
The Agency for Healthcare Research and Quality (AHRQ) was established in 1989 as the Agency for Health Care Policy and Research. Reauthorizing legislation passed in November 1999 established $A H R Q$ as the lead federal agency on quality research. AHRQ operates under the U.S. Department of Health and Human Services and is the lead agency charged with supporting research designed to improve the quality of health care, reduce its cost, and broaden access to essential services. AHRQ's broad programs of research bring practical, science-based information to medical practitioners and to consumers and other health care purchasers.

## State and Territorial Agencies

## Cardiovascular Health Council of the Association of State and Territorial Chronic Disease Program Directors

Jack Hataway

Director, Chronic Disease Prevention Division
Alabama Department of Public Health
201 Monroe Street, RSA Tower, Suite 964
Montgomery, AL 36104
Phone: 334-206-5610, Fax: 334-206-5609
E-mail: jhataway@adph.state.al.us
Jason Eberhart-Phillips
Cardiovascular Health Program
Alaska Division of Public Health
PO Box 241623, Anchorage, AK 99524-1623
Phone: 907-269-8447, Fax: 907-562-7802
E-mail: Jason_eberhart-phillips@health.state.ak
Margaret Tate
Chief, Office of Nutrition and Chronic Disease
Prevention Services
Arizona Department of Health Services
150 North 18th Avenue, Suite 310, Phoenix, AZ 85007
Phone: 602-542-2829, Fax: 602-542-1890
E-mail: mtate@hs.state.az.us
Jan Bunch
Chronic Disease Service Unit
Arkansas Department of Health
4815 West Markham Street, Slot 41
Little Rock, AR 72205
Phone: 501-661-2150, Fax: 501-661-2055
E-mail: jbunch@healthyarkansas.com

Kathleen H. Acree
Chief, Chronic Disease Control Branch
California Department of Health Services
PO Box 942732, MS-7208
Sacramento, CA 94234-7320
Phone: 916-552-9900, Fax: 916-552-9729
E-mail: kacree@dhs.ca.gov

Normie Morin-Voilleque
Director, Chronic Disease Section-A5
Colorado Department of Public Health and Environment
4300 Cherry Creek Drive South
Denver, CO 80246-1530
Phone: 303-692-2505, Fax: 303-691-7721
E-mail: normie.morin@state.co.us

Rosa M. Biaggi
Director, AIDS and Chronic Disease Division
Connecticut Department of Public Health
410 Capitol Avenue, MS-11 APV
PO Box 340308, Hartford, CT 06134
Phone: 860-509-7801, Fax: 860-509-7855
E-mail: rosa.biaggi@po.state.ct.us
Gregory Roane
Chronic Disease Director
Delaware Division of Public Health
PO Box 637, Dover, DE 19904-0637
Phone: 302-741-2900, Fax: 302-741-2910
E-mail: gregory.roane@state.de.us

Karen Barry
Chief, Bureau Chronic Disease
District of Columbia Department of Health
825 North Capitol Street, N.E. \#3147
Washington, D.C. 20002
Phone: 202-442-9366, Fax: 202-442-4825
E-mail: kbarry@ dehealth.com

Jennie A. Hefelfinger
Florida Department of Health
Bureau of Chronic Disease
4052 Bald Cypress Way, Bin \#A18
Tallahassee, FL 32399-1744
Phone: 850-245-4330, Fax: 850-414-6625
E-mail: jennie_a_hefelfinger@doh.state.fl.us
Carol Steiner
Director, Cancer Control Section
Georgia Department of Human Resources
2 Peachtree Street, Room 16-293, Atlanta, GA 30303
Phone: 404-657-6606, Fax: 404-657-6316
E-mail: cbsteiner@dhr.state.ga.us
Barbara Yamashita
Chief, Community Health
Hawaii State Department of Health
1250 Punchbowl Street, Room 218
Honolulu, HI 96801-3378
Phone: 808-586-4126, Fax: 808-586-4791
E-mail: bayamash@mail.health.state.hi.us
Elke Shaw-Tulloch
Chief, Bureau of Community and Environmental Health
Idaho Division of Health
450 W. State Street, 6th Floor, Boise, ID 83720-0036
Phone: 208-334-5950, Fax: 208-334-6573
E-mail: shawe@idhw.state.id.us
Chandana Nandi
Chief, Office of Health Promotion
Illinois Department of Public Health
535 West Jefferson Street, Springfield, IL 62761
Phone: 217-782-3300, Fax: 217-782-1235
E-mail: cnandi@idph.state.il.us

Sue Percifield
Director
Indiana State Department of Health
2 North Meridian Street, Suite 6-A
Indianapolis, IN 46204-3003
Phone: 317-233-7816, Fax: 317-233-7805
E-mail: spercifi@isdh.state.in.us
Jill Myers-Geadelmann
Chief, Cancer Prevention and Control Bureau
Iowa Department of Public Health
321 E. 12th Street, Des Moines, IA 50319-0075
Phone: 515-242-6067, Fax: 515-281-4535
E-mail: jgeadelm@idph.state.ia.us
Paula F. Marmet
Director
Kansas Department of Health and Environment
1000 S.W. Jackson, Suite 230, Topeka, KS 66612-1274
Phone: 785-296-8916, Fax: 785-296-8059
E-mail: pmarmet@kdhe.state.ks.us

## Curtis Rowe

Manager, Chronic Disease Prevention and Control
Kentucky Department for Public Health
275 East Main Street, HSIC-B, Frankfort, KY 40621
Phone: 502-564-7996 (ext. 1), Fax: 502-564-4667
E-mail: curtis.rowe@mail.state.ky.us

## Vicki Scanlon-Leishman

Program Manager, Community Health Promotion and
Chronic Disease
Louisiana Department of Health and Hospitals
PO Box 60630, New Orleans, LA 70160
Phone: 504-599-1087, Fax: 504-568-7005
E-mail: vsleishm@dhh.state.la.us
Barbara A. Leonard
Director, Division of Community Health Promotion
Maine Department of Health and Human Services
11 State House Station
286 Water Street, 4th Floor, Augusta, ME 04333
Phone: 207-287-5387, Fax: 207-287-4631
E-mail: barbara.a.leonard@maine.gov
Patricia Boehm
Chief, Chronic Disease Prevention Teams
Maryland Department of Health and Mental Hygiene
300 West Preston Street, Suite 200, Baltimore, MD 21202
Phone: 410-767-5590, Fax: 410-333-7411
E-mail: boehmp@dhmh.state.md.us
Cynthia Boddie-Willis
Director, Division of Community Health Promotion
Massachusetts Department of Public Health
250 Washington Street, 4th Floor, Boston, MA 02108
Phone: 617-624-5467, Fax: 617-624-5075
E-mail: cynthia.boddie-willis@state.ma.us
Carol Callaghan
Director, Division of Chronic Disease and Injury Control
Michigan Department of Community Health3423 N. Martin Luther King Jr. Blvd.PO Box 30195, Lansing, MI 48909Phone: 517-335-8379, Fax: 517-335-9397E-mail: callaghanc@michigan.gov
Mary ManningChief, Center for Health PromotionMinnesota Department of HealthPO Box 9441, Minneapolis, MN 55414
Phone: 651-676-5201, Fax: 651-676-5057
E-mail: mary.manning@state.mn.us

## Victor Sutton

Director, Health Promotion
Mississippi State Department of Health
PO Box 1700, 570 East Woodrow Wilson
Jackson, MS 39215-1700
Phone: 601-576-7725, Fax: 601-576-7497
E-mail: vsutton@msdh.state.ms.us

Paula Nickelson
Director, Division of Community Health
Missouri Department of Health and Senior Services
920 Wildwood, PO Box 570
Jefferson City, MO 65102-0570
Phone: 573-522-6252, Fax: 573-552-5348
E-mail: nickep@dhss.mo.gov
Todd Harwell
Chief, Chronic Disease and Health Promotion Bureau
Montana Department of Public Health and Human Services
Cogswell Bldg., 1400 Broadway, Room C-317
Helena, MT 59620
Phone: 406-444-1437, Fax: 406-444-7465
E-mail: tharwell@state.mt.us
Roméo Guerra
Deputy Director for Health Services
Nebraska Department of Health and Human Services System
301 Centennial Mall South
PO Box 95044, Lincoln, NE 68509-5044
Phone: 402-471-6038, Fax: 402-471-9449
E-mail: romeo.guerro@hhss.state.ne.us
Richard Whitley
Chief
Nevada State Health Division
505 East King Street, Room 103, Carson City, NV 89701
Phone: 775-684-5958, Fax: 775-684-5998
E-mail: rwhitley@nvhd.state.nv.us

Margaret Murphy
Acting Director
New Hampshire Department of Health and Human Services
6 Haven Drive, Suite 2 East
Concord, NH 03301
Phone: 603-271-4524, Fax: 603-271-0539
E-mail: mmurphy@dhhs.state.nh.us
Doreleena Sammons-Posey
Program Manager, Cancer and Reproductive Health
New Jersey Department of Health and Senior Services
50 East State Street, 6th Floor
PO Box 364, Trenton, NJ 08625-0364
Phone: 609-292-8540, Fax: 609-292-9599
E-mail: Doreleena.Sammons-Posey @ doh.state.nj.us
David Vigil
Chief, Chronic Disease Prevention and Control
New Mexico Department of Health
625 Silver, S.W. \#200, Albuquerque, NM 87102
Phone: 505-841-5836, Fax: 505-841-5685
E-mail: davidv@doh.state.nm.us

Mark S. Baptiste
Director, Division of Chronic Disease Prevention and Adult Health
New York State Department of Health
Corning Tower Building, Empire State Plaza, Room 515
Albany, NY 12237-0675
Phone: 518-474-0512, Fax: 518-473-2853
E-mail: msb02@health.state.ny.us
Marcus Plescia
Section Chief, Chronic Disease and Injury
North Carolina Department of Health and Human Services
1915 Mail Service Center, Raleigh, NC 27699-1915
Phone: 919-715-0215, Fax: 919-715-3153
E-mail: Marcus.Plescia@ncmail.net

Sherri Paxon
Director, Division of Chronic Disease
North Dakota Department of Health
600 E. Boulevard Avenue, Bismarck, ND 58505-0200
Phone: 701-328-2698, Fax: 701-328-2036
E-mail: spaxon@state.nd.us

## Frank S. Bright

Chief, Bureau of Health Promotion and Risk Reduction
Ohio Department of Health
246 North High Street, PO Box 118
Columbus, OH 43266-0118
Phone: 614-466-2144, Fax: 614-564-2409
E-mail: fbright@gw.odh.state.oh.us

## Adeline M. Yerkes

Chief, Chronic Disease Service
Oklahoma State Department of Health
1000 North East 10th Street
Oklahoma City, OK 73117-1299
Phone: 405-271-4072 (ext. 57123), Fax: 405-271-3615
E-mail: adeliney@health.state.ok.us

Jane M. Moore

Manager, Health Promotion and Chronic Disease Prevention
Oregon Department of Health Services
800 N.E. Oregon Street, Suite 730
Portland, OR 97232
Phone: 503-731-4273, Fax: 503-731-4082
E-mail: jane.m.moore@state.or.us

Leslie Best
Director, Bureau of Chronic Disease and Injury Program
Pennsylvania Department of Health
Health and Welfare Bldg., Room 1000, Harrisburg, PA 17120
Phone: 717-787-6214, Fax: 717-783-5498
E-mail: Ibest@state.pa.us

Ann Thacher
Chief, Office of Health Promotion and Chronic Disease Prevention
Rhode Island Department of Health
3 Capitol Hill, Room 409
Providence, RI 02908-5097
Phone: 401-222-7637, Fax: 401-222-4415
E-mail: AnnT@doh.state.ri.us

Michael D. Byrd
Director
South Carolina Department of Health and Environmental Control
2600 Bull Street, Columbia, SC 29201
Phone: 803-545-4481, Fax: 803-545-4921
E-mail byrdmd@dhec.sc.gov
Norma Schmidt
Team Leader, Chronic Disease Prevention
South Dakota Department of Health
615 East Fourth Street, Pierre, SD 57501-1700
Phone: 605-773-5728, Fax: 605-773-5509
E-mail: norma.schmidt@state.sd.us

## Donna Henry

Acting Director, Health Promotion Division
Tennessee Department of Health
Cordell Hull Building, 6th Floor
425 5th Avenue North, Nashville, TN 37247-7366
Phone: 615-253-5800, Fax: 615-253-8478
E-mail: donna.henry@state.tn.us

Philip Huang
Director
Texas Department of Health
1100 W. 49th Street, Austin, TX 78756-7446
Phone: 512-458-7200, Fax: 512-458-7618
E-mail: Philip.Huang@tdh.state.tx.us

Ladene Larsen
Director, Bureau of Health Promotion
Utah Department of Health
288 North 1460 West, PO Box 142107
Salt Lake City, UT 84114-2107
Phone: 801-538-62201, Fax: 801-538-9495
E-mail: ladenelarsen@utah.gov
Karen Garbarino
Chronic Disease Director
Vermont Department of Health
PO Box 70, Burlington, VT 05402
Phone: 802-951-4004, Fax: 802-651-1634
E-mail: kgarbar@vdh.state.vt.us

Ramona D. Schaeffer
Director, Chronic Disease Prevention and Control
Virginia Department of Health
109 Governor Street, 10th Floor, Richmond, VA 23219
Phone: 804-864-7877, Fax: 804-864-7880
E-mail: Ramona.Schaeffer@vdh.virginia.gov
Mary Frost
Director, Chronic Disease Prevention and Risk
Washington State Department of Health
PO Box 47855, Olympia, WA 98504-7855
Phone: 360-236-3628, Fax: 360-236-3646
E-mail: mary.frost@doh.wa.gov
Tom Sims
Director, Division of Health Promotion and Chronic Disease
West Virginia Bureau for Public Health
350 Capitol Street, Room 319
Charleston, WV 25301-3715
Phone: 304-558-0644, Fax: 304-558-1553
E-mail: tomsims@wvdhhr.org

Millie Jones
Director, Bureau of Community Health and Prevention
Wisconsin Division of Public Health
1 West Wilson Street, Room 230
PO Box 2659, Madison, WI 53701-2659
Phone: 608-266-2684, Fax: 608-267-3824
E-mail: jonesmj@dhss.state.wi.us
Linda L. Chasson
Chief, Chronic Disease Section
Wyoming Department of Health
Qwest Building, Suite 259A
6101 N. Yellowstone Road
Cheyenne, WY 82002
Phone: 307-777-3579, Fax: 307-777-8604
E-mail: lchass@state.wy.us

## Heart Disease and Stroke Prevention Program Managers

Janice Cook

Alabama Department of Public Health
201 Monroe Street, RSA Tower, Suite 962
Montgomery, AL 36104
Phone: 334-206-5610, Fax: 334-206-5609
E-mail: jcook@adph.state.al.us
Carol White
Section of Community Health and EMS
Alaska Department of Health and Social Services
PO Box 110616, Juneau, AK 99811-0616
Phone: 907-465-8670, Fax 907-465-2770
E-mail: carol_white@health.state.ak.us
Linda Faulkner
Arkansas Department of Health
4815 W. Markham Street, Slot 11
Little Rock, AR 72205-3867
Phone: 501-661-2956, Fax: 501-661-2070
E-mail: lfaulkner@healthyarkansas.com

Gloria Latimer
CVH Program Manager
Colorado Department of Public Health and Environment
4300 Cherry Creek Drive S., A-5
Denver, CO 80246-1530
Phone: 303-692-2562, Fax: 303-691-7721
E-mail: gloria.latimer@state.co.us
Chris Andresen
Connecticut Department of Public Health
410 Capitol Avenue, MS-11 HLS
PO Box 340308, Hartford, CT 06134-0308
Phone: 860-509-7828, Fax: 860-509-7855
E-mail: chris.andresen@po.state.ct.us
Vance Farrow
District of Columbia Department of Health
825 North Capital Street N.E.
Washington, D.C. 20002
Phone: 202-442-5891
E-mail: vance.farrow@dc.gov

## Linda Greis

Bureau of Chronic Disease Prevention
Florida Department of Health
4052 Bald Cypress Way, Bin \#A18
Tallahassee, FL 32399-1744
Phone: 850-245-4444 (ext. 3800), Fax: 850-414-6625
E-mail: Linda_Greis@doh.state.fl.us
Carol B. Steiner
Cardiovascular Health Initiative Health Promotion
Georgia Department of Human Resources
2 Peachtree Street N.W., 29th Floor
Atlanta, GA 30303-3142
Phone: 404-657-6606, Fax: 404-657-6631
E-mail: cbsteiner@dhr.state.ga.us

Julie Harvill
Illinois Department of Public Health 535 West Jefferson Street, 2nd Floor Springfield, IL 62761
Phone: 217-782-3300, Fax: 217-782-1235
E-mail: jharvill@idph.state.il.us
Misty Jimerson
Kansas Department of Health and Environment
1000 S.W. Jackson, Suite 230
Topeka, Kansas 66612-1274
Phone: 785-296-3921, Fax: 785-296-8059
E-mail: mjimerson@kdhe.state.ks.us

## Brian Boisseau

Division of Adult and Child Health
Kentucky Department of Public Health
275 East Main Street, HS 1C-B
Frankfort, KY 40621
Phone: 502-564-7996 (ext. 3823), Fax: 502-564-4667
E-mail: Brian.Boisseau@ky.gov
Tara Doskey
Louisiana Department of Health and Hospitals
325 Loyola Avenue, Room 212
New Orleans, LA 70112
Phone: 504- 568-7562, Fax: 504 568-7005
E-mail: tdoskey@dhh.la.gov
Debra A. Wigand
Maine Department of Human Services
11 State House Station, Key Bank Plaza, 4th Floor
Augusta, ME 04333-0011
Phone: 207-287-4624, Fax: 207-287-4631
E-mail: debra.a.wigand@maine.gov

Kathy Foell
Massachusetts Department of Public Health 250 Washington Street, 4th Floor Boston, MA 02108
Phone: 617-624-5469, Fax: 617-624-5075
E-mail: kathy.foell@state.ma.us

Khatidja Dawood
Center for Health Promotion
Minnesota Department of Health
PO Box 64882, St. Paul, MN 55101
Phone: 651-281-9838, Fax: 651-215-8959
E-mail: khatidja.dawood@health.state.mn.us
Tennille Howard
Mississippi State Department of Health
PO Box 1700, 570 East Woodrow Wilson
Jackson, MS 39215-1700
Phone: 601-576-7783, Fax: 601-576-7444
E-mail: thoward@msdh.state.ms.us
Judy Alexiou
Section for Chronic Disease Prevention and Health Promotion
Missouri Department of Health and Senior Services
920 Wildwood Drive, PO Box 570
Jefferson City, MO 65102-0570
Phone: 573-522-2868, Fax: 573-522-2898
E-mail: alexij@dhss.mo.gov
Crystelle Fogle
Cardiovascular Health Program
Montana Department of Public Health and Human Services
PO Box 202951, Helena, MT 59620-2951
Phone: 406-947-2344, Fax: 406-444-7465
E-mail: cfogle@mt.gov

Jamie Hahn
Nebraska Department of Health and Human Services System
301 Centennial Mall South
PO Box 95044, Lincoln, NE 68509-5044
Phone: 402-471-3493, Fax: 402-471-6446
E-mail: jamie.hahn@hhss.ne.gov
Deborah A. Spicer
Healthy Heart Program
New York State Department of Health
Riverview Center, 3rd Floor West
150 Broadway, Albany NY 12204
Phone: 518-474-6683, Fax: 518-474-3356
E-mail: das09@health.state.ny.us
Elizabeth (Libby) Puckett
Division of Public Health
North Carolina Department of Health and Human Services
1915 Mail Service Center
Raleigh, NC 27699-1915
Phone: 919-715-3342, Fax: 919-715-0433
E-mail: Libby.Puckett@ncmail.net

Susan M. Mormann

North Dakota Department of Health
600 E. Boulevard Avenue, Dept. 301
Bismarck, ND 58505-0200
Phone: 701-328-2305, Fax: 701-328-2036
E-mail: smormann@state.nd.us
Barbara Pryor
Ohio Department of Health
246 North High Street, PO Box 118
Columbus, OH 43266-0118
Phone: 614-644-6963, Fax: 614-644-7740
E-mail: bpryor@odh.ohio.gov

Adeline M. Yerkes
Oklahoma State Department of Health 1000 North East 10th Street
Oklahoma City, OK 73117-1299
Phone: 405-271-4072 (ext. 57123), Fax: 405-271-5181
E-mail: adeliney@health.state.ok.us
Nancy G. Clarke
Oregon Department of Health Services
800 N.E. Oregon Street, Suite 730
Portland, OR 97232-2162
Phone: 503-731-4082, Fax: 503-731-4082
E-mail: nancy.g.clarke@state.or.us
Dory Masters
Division of Cardiovascular Health
South Carolina Department of Health and Environmental Control
1777 St. Julian Place, Heritage Building
Columbia, SC 29201
Phone: 803-545-4498, Fax: 803-545-4492
E-mail: masterdm@dhec.sc.gov
Frances A. Walls
Community Services Section
Tennessee Department of Health
Cordell Hull Building, 6th Floor
425 5th Avenue North, Nashville, TN 37247-5210
Phone: 615-741-0390, Fax: 615-532-8478
E-mail: frances.walls@state.tn.us
Jennifer Smith
Cardiovascular Health and Wellness Program
Texas Department of Health
1100 W. 49th Street, T-406, Austin, TX 78756
Phone: 512-458-7111 (ext. 2209), Fax: 512-458-7618
E-mail: jennifer.smith@dshs.state.tx.us

Joan Ware
Bureau of Health Promotion
Utah Department of Health
PO Box 142107, Salt Lake City, UT 84114-2107
Phone: 801-538-6228, Fax: 801-538-9495
E-mail: JWARE@utah.gov
Laura Wimmer
Division of Chronic Disease Prevention and Control
Virginia Department of Health
109 Governor Street, 10th Floor, Room 132
Richmond, VA 23219
Phone: 804-864-7884, Fax: 804-864-7880
E-mail: laura.wimmer@vdh.virginia.gov
Miriam Patanian
Coordinator, Heart Disease and Stroke Prevention Program
Washington State Department of Health
7211 Cleanwater Lane, Bldg. 15
PO Box 47836, Olympia, WA 98504-7836
Phone: 360-236-3792, Fax: 360-236-3708
E-mail: Miriam.patanian@doh.wa.gov
Amy Carte
West Virginia Bureau for Public Health
350 Capitol Street, Room 206
Charleston, WV 25301-3715
Phone: 304-558-0644, Fax: 304-558-1553
E-mail: amycarte@wvdhhr.org
Mary Jo Brink
Chronic Disease Prevention Unit
Wisconsin Division of Public Health
1 West Wilson Street, Room 218
Madison, WI 53701-2659
Phone: 608- 266-3702, Fax: 608-266-8925
E-mail: brinkmj@dhfs.state.wi.us

# Minority Health Organization 

Minority Health Professions Foundation
3 Executive Park Drive NE, Suite 100, Atlanta, GA 30329
Phone: 404-634-1993, Fax: 404-634-1903
Web site: http://www.minorityhealth.org
The Minority Health Professions Foundation is a nonprofit educational, scientific, and charitable organization that provides support for professional education, research, and community services that promote optimum health among poor and minority people.

## Heart Disease and Stroke Organizations

American Heart Association, National Center 7272 Greenville Avenue, Dallas, TX 75231<br>Web site: http://www.americanheart.org<br>The American Heart Association is a not-for-profit, voluntary health organization funded by private contributions. Its mission is to reduce disability and death from cardiovascular diseases and stroke.

American Stroke Association, National Center
7272 Greenville Avenue, Dallas, TX 75231
Web site: http://www.americanheart.org

The American Stroke Association is a division of the American Heart Association, which is a not-for-profit, voluntary health organization funded by private contributions. Its mission is to reduce disability and death from cardiovascular diseases and stroke.

## Brain Attack Coalition

National Institute of Neurological Disorders and Stroke Building 31, Room 8A-16, 31 Center Drive, MSC 2540, Bethesda, MD 20892
Phone: 301-496-5751, Fax: 301-496-0296
Web site: http://www.stroke-site.org
The Brain Attack Coalition is a group of professional, voluntary, and governmental entities dedicated to reducing the occurrence of and the disabilities and death associated with stroke. The goal of the coalition is to strengthen and promote the relationships among its
member organizations in order to help people who have had a stroke or are at risk for a stroke.

Centers for Disease Control and Prevention (CDC)
National Center for Chronic Disease Prevention and Health Promotion
Division of Adult and Community Health
4770 Buford Highway NE, MS K-47
Atlanta, GA 30341-3717
Phone: 770-488-2424, Fax: 770-488-2564
Web site: http://www.cdc.gov/nccdphp/cvd

CDC has established cardiovascular health programs in 32 states and the District of Columbia. These programs are committed to reducing the burden of heart disease and stroke by promoting heart-healthy and stroke-free working and living environments. In addition, the Cardiovascular Health Branch at CDC performs extensive monitoring of recent trends in cardiovascular disease and conducts applied research to prevent cardiovascular disease.

Health Care Financing Administration
Centers for Medicare \& Medicaid Services
7500 Security Blvd., Baltimore, MD 21244-1850
Phone: 410-786-3000
Web site: http://www.cms.hhs.gov

The mission of the Centers for Medicare \& Medicaid Services is to serve Medicare and Medicaid beneficiaries. The goal is to launch and enhance the Medicare education campaign to help beneficiaries and their caregivers become active and informed participants in their health care decisions.

InterAmerican Heart Foundation
American Heart Association, National Center
7272 Greenville Avenue, Dallas, TX 75231
Phone: 214-706-1218, Fax: 214-373-0268 or 972-562-3807
Web site: http://www.americanheart.org
The goals of the InterAmerican Heart Foundation are to promote an environment throughout North, Central, and South America and the Caribbean conducive to the prevention of heart diseases and stroke;
to facilitate the development and growth of heart foundations; and to foster partnerships between health professionals and other sectors of society, including business and government, for the accomplishment of its mission.

National Institute of Neurological Disorders and Stroke NIH Neurological Institute
PO Box 5801, Bethesda, MD 20824
Phone: 800-352-9424
Web site: http://www.ninds.nih.gov

The goal of the National Institute of Neurological Disorders and Stroke is to reduce the burden of neurological disease-a burden borne by every age group, by every segment of society, and by people all over the world.

National Stroke Association
9707 E. Easter Lane, Englewood, CO 80112
Phone: 303-649-9299 or 1-800-STROKES (787-6537)
Fax: 303-649-1328
Web site: http://www.stroke.org
The mission of the National Stroke Association is to reduce the incidence and impact of stroke, to save lives, and to improve the quality of care among stroke survivors.

## Patient Resources

National Heart, Lung, and Blood Institute
National Institutes of Health
Building 31, 31 Center Drive, Bethesda, MD 20892
Web site: http://www.nhlbi.nih.gov/index.htm

The National Heart, Lung, and Blood Institute can supply a wealth of information regarding heart, blood, and lung diseases for patients. Resources are available on the Internet as well as via telephone and direct mail.

# American Heart Association, National Center 7272 Greenville Avenue, Dallas, TX 75231 <br> Web site: http://www.americanheart.org 

The American Heart Association offers resources for heart disease patients regarding health, fitness, and dietary guidelines. Information can be obtained through the Internet, by telephone, or by direct mail.

American Stroke Association, National Center 7272 Greenville Avenue, Dallas, TX 75231<br>Web site: http://www.strokeassociation.org

The American Stroke Association is a division of the American Heart Association, which offers resources for heart disease patients regarding health, fitness, and dietary guidelines. Information may be obtained via the Internet, telephone, or direct mail.

Centers for Disease Control and Prevention (CDC)
1600 Clifton Road, Atlanta, GA 30333
Phone: 404-639-7000
Web site: http://www.cdc.gov
CDC is a government agency dedicated to the promotion of health and quality of life by preventing and controlling disease, injury, and disability. The CDC Web site provides information about a variety of health topics, including women's, cardiovascular, and minority health.

Michele L. Casper is an epidemiologist in the Cardiovascular Health Branch of the Centers for Disease Control and Prevention (CDC). She received her PhD in epidemiology from the University of North Carolina School of Public Health. Her research focuses primarily on the geographic, racial, and ethnic disparities in cardiovascular disease.

Clark H. Denny is an epidemiologist in the Cardiovascular Health Branch of CDC. He received his PhD in sociology from Emory University, specializing in demography. He has 8 years of experience studying the health behaviors of American Indians and Alaska Natives.

Jonathan N. Coolidge was an Association of the Schools of Public Health fellow working in the Cardiovascular Health Branch of CDC in 2004. He is now attending Albany Medical College. He received his MPH from Emory University, concentrating in epidemiology, and his BA in biology from the College of the Holy Cross.
G. Ishmael Williams, Jr., is a Geographic Information Systems (GIS) analyst in the Cardiovascular Health Branch of CDC. He received his MA in anthropology from the University of Arkansas and has more than 15 years of experience in GIS research, spanning archeology, environmental management, and public health.

Amanda Crowell is a writer-editor in the National Center for Chronic Disease Prevention and Health Promotion of CDC. She attended the University of Alabama, majoring in English.

James M. Galloway, MD, FACP, FACC, is the senior cardiologist for the Indian Health Service (IHS) and is based at the University of Arizona. His primary focus is the optimal prevention, detection, and control of cardiovascular disease among American Indians and Alaska Natives.

Nathaniel Cobb is the principal chronic disease epidemiologist for IHS. He received his MD from Harvard Medical School. He did his residency at the University of New Mexico and then a fellowship in epidemiology at CDC.

U.S. Department of Health and Human Services


[^0]:    1. U.S. Department of Health and Human Services. International Classification of Diseases, 9th Revision, Clinical Modification. Washington, DC: Public Health Service, Health Care Financing Administration; 1980.
    2. World Health Organization. Intemational Classification of Diseases and Related Health Problems, 10th Revision, Clinical Modification. Geneva: World Health Organization; 1992.
    3. Frost F, Shy K. Racial differences between linked birth and infant death records in Washington state. American Journal of Public Health 1980;70(9):974-6.
    4. Hahn RA, Mulinare J, Teutsch SM. Inconsistencies in coding of race and ethnicity between birth and death in US infants: a new look at infant mortality, 1983 through 1985. JAMA 1992;267(2):259-63.
    5. Kennedy RD, Deapen RE. Differences between Oklahoma Indian infant mortality and other races. Public Health Reports 1991;106(1):97-8.
    6. Indian Health Service. Adjusting for Miscoding of Indian Race on State Death Certificates. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service; 1996.
[^1]:     to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.
    $\ddagger$ Estimates for states with $<50$ respondents are considered unstable and are not reported
    § The Indian Health Service (IHS) provides services to American Indians and Alaska Natives in 35 states. Only these 35 states were used for the regional estimates. Regions are defined as follows: East = Alabama, Connecticut, Florida Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, lowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

[^2]:    Note: To compare these prevalances with those for the total U.S. population, see Appendix A.

[^3]:     probability of sampling.
    ${ }^{\dagger}$ Confidence interval.
    £ Estimates for states with $<50$ respondents are considered unstable and are not reported.
     Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, Iowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

[^4]:     not at all?" People who reported smoking at least 100 cigarettes in their lifetime and smoking now every day or some days were defined as current smokers. Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.
    $\ddagger$ Estimates for states with $<50$ respondents are considered unstable and are not reported.
    § The Indian Health Service (IHS) provides services to American Indians and Alaska Natives in 35 states. Only these 35 states were used for the regional estimates. Regions are defined as follows: East = Alabama, Connecticut, Florida Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsy/vania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, lowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996

[^5]:     walking for exercise?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling
    ${ }^{+}$Confidence interval.
    $\ddagger$ Estimates for states with $<50$ respondents are considered unstable and are not reported.
     Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, Iowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

[^6]:     U.S. population, and are weighted for the probability of sampling
    ${ }^{\dagger}$ Confidence interval
    $\ddagger$ Estimates for states with $<50$ respondents are considered unstable and are not reported.
     Louisiana, Maine, Massachusetts, Mississippi, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Texas, Oklahoma, and Kansas. Northern Plains = Indiana, Iowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming. Southwest = Arizona, Colorado, Nevada, New Mexico, and Utah. Pacific Coast = California, Idaho, Oregon, and Washington. Alaska = Alaska. These regional definitions were first used in CDC's Health Behaviors of American Indians and Alaska Natives: Findings from the Behavioral Risk Factor Surveillance System, 1993-1996.

[^7]:    * Data are based on "yes" responses to the following BRFSS question: "Have you ever been told by a doctor, nurse, or other health professional that you have high blood pressure?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    Confidence interval.

[^8]:    * Data are based on "yes" responses to the following BRFSS question: "Have you ever been told by a doctor or other health professional that your blood cholesterol is high?" Data are for adults $\geq 18$ years, are age-adjusted to the

    2000 U.S. population, and are weighted for the probability of sampling.

    + Confidence interval.

[^9]:    "Data are based on "yes" responses to the following BRFSS question: "Have you ever had your blood cholesterol checked?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling
    ${ }^{\dagger}$ Confidence interval.

[^10]:    Data are based on "yes" responses to the following BRFSS question: "Have you ever been told by a doctor that you have diabetes?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.

[^11]:    * Data are based on "yes" responses to the following BRFSS question: "Have you smoked at least 100 cigarettes in your entire life?" Respondents who answered "yes" were then asked, "Do you now smoke every day, some days, or not at all?" People who reported smoking at least 100 cigarettes in their lifetime and smoking now every day or some days were defined as current smokers. Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.

[^12]:     BMI $\geq 30.0$ was considered obese. Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{+}$Confidence interval.

[^13]:    Data are based on "no" responses to the following BRFSS question: "During the past month, other than your regular job, did you participate in any physical activities or exercise such as running, calisthenics, golf, gardening, or walking for exercise?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000 U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.

[^14]:    * Data are based on people who answered "poor" to the following BRFSS question: "Would you say that in general your health is excellent, very good, good, fair, or poor?" Data are for adults $\geq 18$ years, are age-adjusted to the 2000
    U.S. population, and are weighted for the probability of sampling.
    ${ }^{\dagger}$ Confidence interval.

[^15]:    * Each county can be bordered by as few as one or as many as eight neighboring counties.

